
Chapter 11: Simply Extensions

Basic Types / The Unit Type

Derived Forms: Sequencing and Wildcard

Ascription / Let Binding

Pairs/Tuples/Records

Sums/Variants

General Recursion / Lists

Base Types

•  Base types in every programming language:

–  sets of simple, unstructured values such as numbers,

booleans, or characters, and

–  primitive operations for manipulating these values.

•  Theoretically, we may consider our language is
equipped with some uninterpreted base types.

A, B, C, …

λx:A. x; ���
<fun>: A→A

λx:B. x;

<fun>: B→B

λf:A→A. λx:A. f(f(x));

<fun>: (A→A)→A→A ���

The Unit Type

•  It is the singleton type (like void in C).

Application: Unit-type expressions care more about “side effects”

 rather than “results”.

Derived Form: Sequencing t1 ; t2

•  A direct extension (λE)

–  t ::= …

 t1 ; t2

–  New valuation relation rules

–  New typing rules

Derived Form: Sequencing t1 ; t2

•  Derived form (λI): syntactic sugar

•  Theorem [Sequencing is a derived form]: Let

 e ∈ λE → λI

be the elaboration function (desugaring) that translates from the
external to the internal language by replacing every occurrence of
t1;t2 with (λx:Unit.t2) t1. Then

Derived Form: Wildcard

•  A derived form

 λ_:S.t è λx:S.t

where x is some variable not occurring in t.

Ascription: t as T

•  t as T

 meaning for the term t, we ascribe the type T

–  Useful for documentation and pinpointing error sources

–  Useful for controlling type printing

–  Useful for specializing types

verification

Let Bindings

•  To give names to some of its subexpressions.

•  Is “let binding” a derived form?

 let x=t1 in t2 è (λx:T1.t2) t1

•  Desugaring is not on terms but on typing derivations

Pairs
•  To build compound data structures.

Tuples
Generalization: binary è n-ary products

Records
Generalization: n-ary products è labeled records

Question: {partno=5524, cost=30.27} = {cost=30.27,partno=5524}?

Sums
•  To deal with heterogeneous collections of values.

•  An Example: Address books

–  Injection by tagging (disjoint unions)

–  Processing by case analysis

Sums
•  To deal with heterogeneous collections of values.

Sums (with Unique Typing)

 Variant

•  Generalization: Sums è Labeled variants

–  T1 + T2 è <l1:T1, l2:Te>

–  inl t as T1+T2 è <l1=t> as <l1:T1, l2:Te>

•  Example:

Special Instances of Variants

•  Options

OptionalNat = <none:Unit, some:Nat>;

•  Enumerations

Weekday = <monday:Unit, tuesday:Unit, wednesday:Unit,

 thursday:Unit, friday:Unit>;

•  Single-Field Variants

V = <l:T>

Operations on T cannot be applied to elements of V without first
unpackaging them: a V cannot be accidentally mistaken for a T.

General Recursions

•  Introduce “fix” operator: fix f = f (fix f)

 (It cannot be defined as a derived form in simply typed lambda calculus)

•  Example 1:

•  Example 2:

•  Example 3: Given any type T, can you define a
term that has type T?

x as T

fix (λx:T. x)

Lists
•  List T describes finite-length lists whose elements are drawn from T.

Homework

•  Read Chapter 11.

•  Do Exercise 11.11.2.

