N || Sz

Chapter 3: Untyped Arithmetic Expressions

A small language of numbers of booleans
Basic aspects of programming languages

Introduction

Grammar
Programs
Evaluation

Nil=S==s

4M¥E$ERPE

Notionol lativgte of Mdormatic

Grammar (Syntax) N | | (12 1885 B9 50

t = terms:
true constant true
false constant false
if t+ then t else t conditional constant
0 zero
succ t successor
pred t predecessor
iszero t zero test

t: meta-varaible (non-terminal symbol)

Programs and Evaluations

e A program in the language is just a tferm built
from the forms given by the grammar.

if false then O else 1 (1 = succ 0)
-1

iszero (pred (succ 0))
- true

NI | Exssas

Syntax

Many ways of defining syntax (besides grammar)

Terms, Inductively

The set of terms is the smallest set T such that
1. {true, false, O} € T;
2. if t1 € T, then {succ t1, pred t1, iszero t1} € T;
3. iftleT,t2€ T, and t3 € T,

then if t1 then t2 else 13 € T.

Terms, by Inference Rules N | | iz

The set of terms is defined by the following rules:

truee T falsee T 0eT
tIET tleT tleT
succt; €T predt; € T iszerot; €T

teT teT t3€T
if t; then ty elsety; € T

Inference rules = Axioms + Proper rules

Terms, Concretely N || Eruzass

[Mosioncl lativate of Indcrmatics |

For each natural number i, define a set S, as follows:

So = @

{true, false, 0}
U {succ t;,predt;,iszerot; | t; € §;}
U {ift; then t; else t3 | t;, ty, t3 € §;}.

W

+4

[e—
Il

Finally, let s = |Jsu

Exercise [**]: How many elements does S3 have?

Proposition: T = S

Induction on Terms

Inductive definitions
Inductive proofs

NIl

(12 tA 882 R FE P

Notionol lativgte of Mdormatics

Inductive Definitions N | | Ehszass

[Mosioncl lativate of Indcrmatics |

The set of constants appearing in a term t, written
Consts(t), is defined as follows:

Consts(true) = {true}
Consts(false) = {false}
Consts(0) = {0}
Consts(succ t,) = (Consts(ty)
Consts(pred t1) = Consts(t1)
Consts(iszero t;) = Consts(ty)

Consts(if t; then t; else t3) = Consts(t;) U Consts(t,) U Consts(ts)

Inductive Detfinitions

NI

(12 tA 882 R FE P

[Mossional lativate of Idormatics |

The size of a term t, written size(t), is defined as

follows:

size(true)

size(false)

size(0)

size(succ ti)

size(pred ti)

size(iszero t;)

size(i f t; then t, else t3)

1
1
1
size(ty1) + 1
size(ty1) + 1
size(t,) + 1

size(t,) + size(ty) + size(t3) + 1

Inductive Definitions N | | &z

The depth of a term t, written depth(t), is defined as
follows:

1
1
1

depth(true)
depth(false)
depth(0)
depth(succ t;) depth(t;) +1

depth(pred t;) depth(t;) +1

depth(iszero t;) = depth(t;) +1

depth(if t; then t; else t3) max(depth(t,),depth(t,), depth(ts)) + 1

Il

Inductive Proof N | | ez

Lemma. The number of distinct constants in a term t
is no greater than the size of ft:

| Consts(t) | < size(t)

Proof. By induction over the depth of t.
- Case t is a constant

- Case t is pred 11, succ t1, or iszero t1
- Case t is if tl1 then t2 else t3

Inductive Proof

Theorem [Structural Induction]

If, for each term s, given P (r) for all immediate
subterms r of s we can show P(s), then P (s) holds
for all s.

N | l (12 1885 B9 50

MNotional U Mdhﬂuw

Semantic Styles

Three basic approaches

Operational Semantics N | | i

e Operational semantics specifies the behavior of a
programming language by defining a simple
abstract machine for it.

e An example (often used in this course):
- terms as states
- transition from one state to another as simplification

- meaning of t is the final state starting from the state
corresponding to t

Denotational Semantics N | | i

e Giving denotational semantics for a language
consists of
- finding a collection of semantic domains, and then

- defining an interpretation function mapping terms into
elements of these domains.

e Main advantage: It abstracts from the gritty
details of evaluation and highlights the essential
concepts of the language.

Axiomatic Semantics N | | Ezsssiss

e Axiomatic methods take the laws (properties)
themselves as the definition of the language. The

meaning of a term is just what can be proved
about it.

- They focus attention on the process of reasoning about
programs.

- Hoare logic: define the meaning of imperative languages

NIz

Evaluation

Evaluation relation (small-step/big-step)
Normal form
Confluence and termination

Evaluation on Booleans

AVARNSARLA AN LIAT.PRAN

N | 132 RSB S R TR

Nbc-ndlw olh’umah(

Syntax

H = terms:
true constant true
false constant false
iftthentelset conditional

vV = values:
true true value
false false value

Evaluation

if true then t; else t3 — t»

t— 1t
(E-IFTRUE)

if false then t2 else t3 — t3 (E-IFFALSE)

t; — t]
if t; then tr else t3
— if t] then t; else t3

(E-IF)

One-step Evaluation Relation

® The one-step evaluation relation — is the smallest
binary relation on terms satisfying the three rules
in the previous slide.

e When the pair (1,t) is in the evaluation relation,
we say that "t — t' is derivable.”

Derivation Tree N | | iz

“if + then false else false — if u then false else false”
is witnessed by the following derivation tree:

E-IFTRUE
E-IF

s — false

t—u

E-IF
if t then false else false — if u then false else false

where

s %' i f true then false else false

t 5 F s then true else true

u 2 i f false then true else true

Induction on Derivation N | | Ezsssiss

Theorem [Determinacy of one-step evaluation]:
If t — t and t — t", then t' = t"".

Proof. By induction on derivation of t — t'.

If the last rule used in the derivation of + — t' is E-
IfTrue, then t has the form if true then t2 else t3.

It can be shown that there is only one way to
reduce such t.

Normal Form N | | i

e Definition: A term t is in normal form if no
evaluation rule applies to it.

e Theorem: Every value is in normal form.

e Theorem: If t is in normal form, then t is a value.
- Prove by contradiction (then by structural induction).

Multi-step Evaluation Relation N || s

e Definition: The multi-step evaluation relation —=
is the reflexive, transitive closure of one-step
evaluation.

¢ Theorem [Uniqueness of normal forms]: If + —= u
and t —= u’, where u and u' are both normal
forms, then u = u'.

e Theorem [Termination of Evaluation]: For every

term t there is some normal form t' such that t
—u% 1

Big-step Evaluation

viv

t1 ¥ true t2 Vv

if t; then tr else t3 ¥ vy

t; ¥ false t3 4 v3

if t; then t2 else t3 ¥ v3

t1 ¥ nv

succ t; ¥ succ nvy

t1 40
predt; 40

t1 ¥ succ nv;

pred t; ¥ nvy

t; 40
iszero t; ¥ true

t; ¥ succ nvy

iszerot; ¥ false

Ni

AVARNSARLA AN LIAT.PRAN

Bz A2 ERTTA

Nllw of Indormatics

(B-VALUE)

(B-IFTRUE)

(B-IFFALSE)

(B-Succ)

(B-PREDZERO)

(B-PREDSUCC)

(B-ISZEROZERO)

(B-ISZEROSUCC)

Extending Evaluation to Numbers N | | ez

—Nnbc.nd lagtivate of Mdcrmatics

New syntactic forms New evaluation rules t—t
t = .. terms: ,
0 constant zero 4L —t : (E-Succ)
succ t Successor succt; — succt
pred t predecessor
iszerot zero test pred 0 — 0 (E-PREDZERO)
pred (succ nvi) — nv; (E-PREDSUCC)
vV oIl= .. values:
nv numeric value t1 — t)
- (E-PRED)
) pred t; — pred t;
nv = numevric values:
0 zero value iszero 0 — true (E-ISZEROZERO)
succ nv successor value
iszero (succ nv,) — false (E-ISzEroSuUCC)
t1 — T3
: .1 = (E-ISZERO)
iszero t; — iszero t;

Summary N || s

e How to define syntax?
- Grammar, Inductively, Inference Rules, Generative

e How to define semantics?
— Operational, Denotational, Axomatic

e How to define evaluation relation (operational
semantics)?
- Small-step/Big-step evaluation relation
- Normal form
- Confluence/termination

Homework

e Do Exercise 3.5.16 in Chapter 3.

Nil=S==s

4M¥E$ERPE

Notionol lativgte of Mdormatic

