

Chapter 5: The Untyped Lambda Calculus

What is lambda calculus for? Basics: syntax and operational semantics Programming in the Lambda Calculus Formalities (formal definitions)

What is Lambda calculus for?

- A core calculus (used by Landin) for
 - capturing the language's essential mechanisms,
 - with a collection of convenient derived forms whose behavior is understood by translating them into the core
- A formal system invented in the 1920s by Alonzo Church (1936, 1941), in which all computation is reduced to the basic operations of function definition and application.

Basics

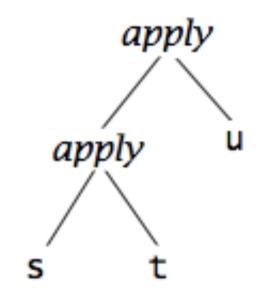
Syntax

• The lambda-calculus (or λ -calculus) embodies this kind of function definition and application in the purest possible form.

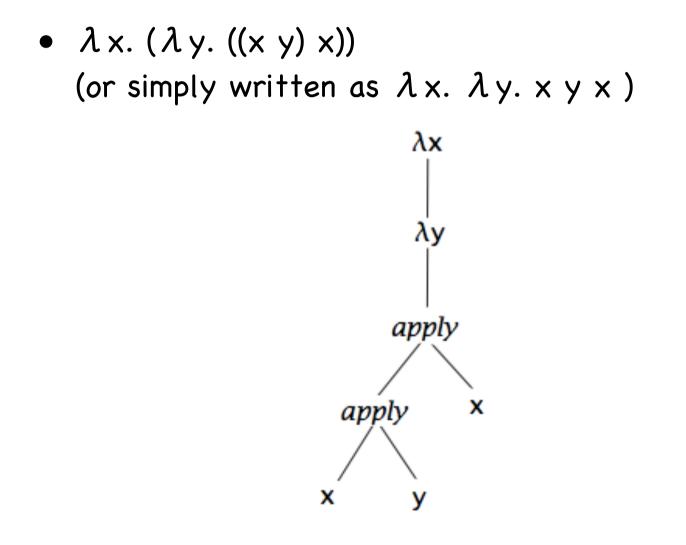
t	::=	terms:
	x	variable
	λx.t	abstraction
	tt	application

Abstract Syntax Trees

• (s t) u (or simply written as s t u)



Abstract Syntax Trees



Scope

- An occurrence of the variable x is said to be bound when it occurs in the body t of an abstraction $\lambda x.t$.
 - λx is a binder whose scope is t. A binder can be renamed: e.g., $\lambda x.x = \lambda y.y$.
- An occurrence of x is free if it appears in a position where it is not bound by an enclosing abstraction on x.
 - **Exercises**: Find free variable occurrences from the following terms: x y, $\lambda x.x$, $\lambda y. x y$, ($\lambda x.x$) x.

Operational Semantics

• Beta-reduction: the only computation

$$(\lambda \mathbf{x}, \mathbf{t}_{12}) \mathbf{t}_2 \rightarrow [\mathbf{x} \mapsto \mathbf{t}_2] \mathbf{t}_{12},$$

"the term obtained by replacing all free occurrences of x in t_{12} by t_2 " A term of the form (λ x.t12) t2 is called a redex.

• Examples:

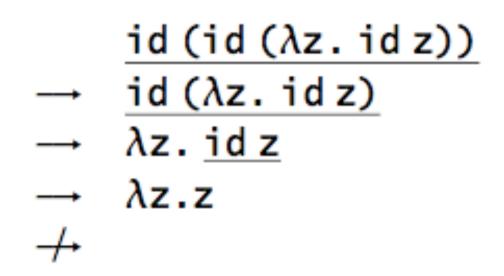
 $(\lambda x.x) y \rightarrow y$

 $(\lambda x. x (\lambda x.x)) (u r) \rightarrow u r (\lambda x.x)$

- Full beta-reduction
 - Any redex may be reduced at any time.
- Example:
 - Let $id = \lambda x.x$. We can apply veta reduction to any of the following underlined redexes:

<u>id (id (λz. id z))</u> id (<u>(id (λz. id z))</u>) id (id (λz. <u>id z</u>))

- The normal order strategy
 - The leftmost, outmost redex is always reduced first.



- The call-by-name strategy
 - A more restrictive normal order strategy, allowing no reduction inside abstraction.

$$\frac{id (id (\lambda z. id z))}{id (\lambda z. id z)}$$

$$\rightarrow \frac{id (\lambda z. id z)}{\lambda z. id z}$$

$$\rightarrow \lambda z. id z$$

- The call-by-value strategy
 - only outermost redexes are reduced and where a redex is reduced only when its right-hand side has already been reduced to a value, a term that cannot be reduced any more.

$$id (id (\lambda z. id z))$$

$$→ id (\lambda z. id z)$$

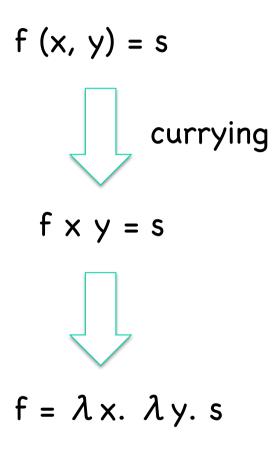
$$→ \lambda z. id z$$

$$→$$

Programming in the Lambda Calculus

Multiple Arguments Church Booleans Pairs Church Numerals Recursion

Multiple Arguments



Church Booleans

• Boolean values can be encodes as:

tru = λ t. λ f. t; fls = λ t. λ f. f;

• Boolean conditional and operators can be encoded as:

test = λ l. λ m. λ n. l m n; and = λ b. λ c. b c fls;

Church Booleans

• An Example

test tru v w

- = $(\lambda 1. \lambda m. \lambda n. 1 m n) tru v w$
- \rightarrow ($\lambda m. \lambda n. trumn$) v w
- \rightarrow (λ n. tru v n) w
- → truvw

=
$$(\lambda t.\lambda f.t) v w$$

$$\rightarrow$$
 ($\lambda f. v$) w

Pairs

• Encoding

pair =
$$\lambda f.\lambda s.\lambda b. b f s;$$

fst = $\lambda p. p tru;$
snd = $\lambda p. p fls;$

• An Example

fst (pair v w)

= fst (
$$(\lambda f. \lambda s. \lambda b. b f s) v w$$
)

- \rightarrow fst ((λ s. λ b. b v s) w)
- \rightarrow fst (λ b. b v w)
- = $(\lambda p. p tru) (\lambda b. b v w)$
- \rightarrow ($\lambda b. b v w$) tru
- -→ truvw

Church Numerals

• Encoding Church numerals:

$$c_0 = \lambda s. \lambda z. z;$$

$$c_1 = \lambda s. \lambda z. s z;$$

$$c_2 = \lambda s. \lambda z. s (s z);$$

$$c_3 = \lambda s. \lambda z. s (s (s z));$$

etc.

• Defining functions on Church numerals:

scc = λ n. λ s. λ z. s (n s z); plus = λ m. λ n. λ s. λ z. m s (n s z); times = λ m. λ n. m (plus n) cO;

Recursion

- Terms with no normal form are said to diverge. omega = $(\lambda x. x x) (\lambda x. x x)$;
- Fixed-point combinator fix = λ f. (λ x. f (λ y. x x y)) (λ x. f (λ y. x x y));

Note: fix f = f(fix f)

Recursion

• Basic Idea:

A recursive definition: h = <body containing h>

Recursion

• Example: fac = λ n. if eq n cO then cl else times n (fac (pred n) $g = \lambda f \cdot \lambda n$. if eq n cO then cl else times n (f (pred n) fac = fix g

Exercise: Check that fac $c3 \rightarrow c6$.

Formalities (Formal Definitions)

Syntax (free variables) Substitution Operational Semantics

Syntax

- **Definition** [Terms]: Let V be a countable set of variable names. The set of terms is the smallest set T such that
 - 1. $x \in T$ for every $x \in V$; 2. if $t_1 \in T$ and $x \in V$, then $\lambda x.t_1 \in T$; 3. If $t_1 \in T$ and $t_2 \in T$, then $t_1 t_2 \in T$.
- Free Variables
 - $FV(x) = \{v\}$ $FV(\lambda \times t_1) = FV(t_1) \setminus \{x\}$ $FV(t_1 t_2) = FV(t_1) \cup FV(t_2)$

Substitution

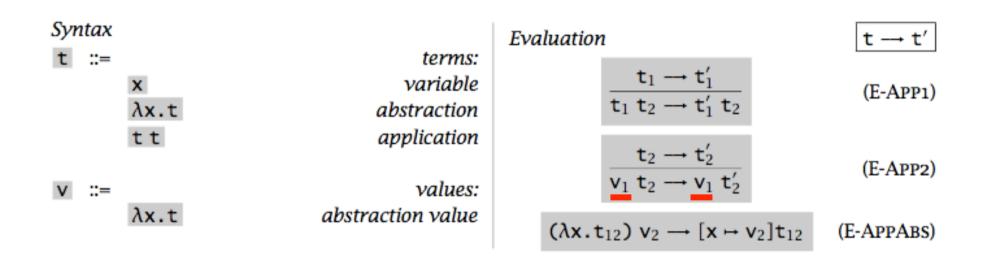
$$[\mathbf{x} \mapsto \mathbf{s}]\mathbf{x} = \mathbf{s} [\mathbf{x} \mapsto \mathbf{s}]\mathbf{y} = \mathbf{y} \qquad \text{if } \mathbf{y} \neq \mathbf{x} [\mathbf{x} \mapsto \mathbf{s}](\lambda \mathbf{y}.\mathbf{t}_1) = \lambda \mathbf{y}. \ [\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_1 \qquad \text{if } \mathbf{y} \neq \mathbf{x} \text{ and } \mathbf{y} \notin FV(\mathbf{s}) [\mathbf{x} \mapsto \mathbf{s}](\mathbf{t}_1 \mathbf{t}_2) = \ [\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_1 \ [\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_2$$

Example:

$$[x \rightarrow y z] (\lambda y. x y)$$

= $[x \rightarrow y z] (\lambda w. x w)$
= $\lambda w. y z w$

Operational Semantics



Summary

- What is lambda calculus for?
 - A core calculus for capturing language essential mechanisms
 - Simple but powerful
- Syntax
 - Function definition + function application
 - Binder, scope, free variables
- Operational semantics
 - Substitution
 - Evaluation strategies: normal order, call-by-name, callby-value

Homework

- Understand Chapter 5.
- Do exercise 5.3.6 in Chapter 5.

Answers to Students' Questions

Q: What is the book I mentioned about Alan Turing? A: Here is the book information

The Annotated Turing: A Guided Tour Through Alan Turing's Historic Paper on Computability and the Turing Machine <u>Charles Petzold</u>

> 出版社: Wiley; 1版 (2008/6/16) 言語: 英語, 英語, 英語 ISBN-10: 0470229055 ISBN-13: 978-0470229057 発売日: 2008/6/16

