Chapter 8: Typed Arithmetic Expressions

Types
The Typing Relation
Safety = Progress + Preservation

NIl

(12 tA 882 R FE P

[Mosioncl lativate of Indcrmatics |

Reall: Syntax E

T = terms:
true constant true
false constant false
if t+ then t else t conditional constant
0 zero
succ T successor predecessor
pred t zero test

iszero t

Evaluation Results N || sz

e Values

vV = values:
true true value

false false value

nv numeric value

nv o= numeric values:

0 zero value

succ nv successor value

e Get stuck (i.e., pred false)

Types of Terms

e Can we ftell, without actually evaluating a term,
that the term evaluation will not get stuck?

v

e Distinguish two types of ferms:
- Nat: terms whose results will be a numeric value
- Bool: terms whose results will be a Boolean value

o "a term t has type T means that t
“obviously” (statically) evaluates to a value of T
- if true then false else true has type Bool
- pred (succ (pred (succ 0))) has type Nat

Nl 12 R8P EA 5ET

The Typing Relation: t: T

Nosonad lactidat. olh‘umu

Typing Rule for Booleans N || s

New syntactic forms New typing rules t:T
N = types:

Bool type of booleans true : Bool (T-TRUE)

false : Bool (T-FALSE)

t, : Bool t, 4T t3 T
ift, thenty elset; : T

(T-IF)

Typing Rules for Numbers

New syntactic forms
T u= .. types:
Nat type of natural numbers
New typing rules t: T
0 : Nat (T-ZERO)

NI

AVARNSARLA AN LIAT.PRAN

_Lfliﬂi??BiR'ﬁ

NJll!M WM

1 = Nat
succ t; : Nat

t; : Nat
pred t; : Nat

t; : Nat

iszero t; : Bool

(T-Succ)

(T-PRED)

(T-ISZERO)

Typing Relation: Formal Definition

e Definition: the typing relation for arithmetic
expressions is the smallest binary relation
between terms and types satisfying all instances
of the typing rules.

e A term tis typable (or well typed) if there is
some T such that t : T.

Inversion Lemma (Generation Lemma) \ || B

“mohdlmolmm

e Given a valid typing statement, it shows
- how a proof of this statement could have been generated;
- a recursive algorithm for calculating the types of fterms.

LEMMA [INVERSION OF THE TYPING RELATION]:

1. If true : R, then R = Bool.

2. If false : R, then R = Bool.

3. If if t; then t; else t3 : R, thent, : Bool, t; : R,and t3 : R
4. If 0 : R, then R = Nat.

5. If succ t; : R, then R = Nat and t; : Nat.

6. If pred t; : R, then R = Nat and t; : Nat.

7. If iszero t; : R, then R = Bool and t, : Nat.

Typing Derivation N | | Eszass

[Mossional lativate of Idormatics |

T-ZERO T-ZERO
0 : Nat 0 : Nat
T-ISZERO T-ZERO T-PRED
iszero 0 : Bool 0 : Nat pred O : Nat i

if iszero 0 then 0 else pred O : Nat

Statements are formal assertions about the typing of programs.
Typing rules are implications between statements
Derivations are deductions based on typing rules.

Uniqueness of Types \ || |

¢ Theorem [Uniqueness of Types]: Each term t has
at most one type. That is, if t is typable, then its
type is unique.

e Note: later on, we may have a type system where
a term may have many types.

Notionol lativgte of Idormatics

N | | sz

Safety = Progress + Preservation

Safety (Soundness)

e By safety, it means well-typed terms do not “go
wrong”.

e By “go wrong”, it means reaching a “stuck state”
that is not a final value but where the evaluation
rules do not tell what to do next.

Safety + Progress + Preservation NI izrusass

Well-typed terms do not get stuck

{r

® Progress: A well-typed term is not stuck (either it
is a value or it can take a step according to the
evaluation rules).

e Preservation: If a well-typed term takes a step of
evaluation, then the resulting term is also well
typed.

UNIp

Ki
R O
'fllS"‘®

Canonical Form N | | &z

e Lemma [Canonical Forms]:
- If v is a value of type Bool, then v is either frue or false.

- If v is a value of type Nat, then v is a numeric value
according to the grammar for nv.

vV o= values:
true true value
false false value
nv numeric value

nv = numeric values:
0 zero value

succ nv successor value

Progress N | | EEfuzass

® Theorem [Progress]: Suppose t is a well-typed
term (that is, t : T for some T). Then either t is a
value or else there is some t' with + — t'.

Proof: By induction on a derivation of 1 : T.

Preservation N | | (12 1885 B9 50

e Theorem [Preservation]:
Ift: Tand t —> t', then t' : T.

Proof: By induction on a derivation of t: T.

Note: The preservation theorem is often called subject reduction
(or subject evaluation)

Homework

e Read Chapter 8.
e Do Exercises 8.3.7

NIl

(12 tA 882 R FE P

Notionol lativgte of Mdormatics

