
編程語言的設計原理
Design Principles of Programming Languages

Haiyan Zhao, Yingfei Xiong, Zhenjiang Hu

趙海燕、熊英飛、胡振江

Peking University, Spring Term, 2014

1

Self-Introduction

2

About Me

•  1988: BS, Computer Science, Shanghai Jiaotong Univ.

•  1991: MS, Computer Science, Shanghai Jiaotong Univ.

•  1996: PhD, Information Engineering, Univ. of Tokyo

•  1997: Assistant Professor, Univ. of Tokyo

•  1997: Lecturer, Univ. of Tokyo

•  2000: Associate Professor, Univ. of Tokyo

•  2008: Full Professor, NII

北京大学海外杰青(2006-2008)

北京大学長江講座教授(2013.12-)

3

Research Interest
•  Functional Programming

–  Calculating Efficient Functional Programs

–  ACM ICFP 2011 General Co-Chair

–  ACM ICFP Steering Committee Co-Chair (2012-)

•  Algorithmic Languages and Calculi

–  Parallel programming and Automatic Parallelization

–  IFIP WG 2.1 Member

•  Bidirectional Transformation Languages in SE

–  Bidirectional languages for software evolution

–  Steering Committee Member of BX, ICMT

4

More Information

5
http://www.research.nii.ac.jp/~hu

About Prof. Zhao

6

•  2003 : PhD, Univ. of Tokyo

•  2003 - :
Associate professor, Peking Univ.

•  Research Interest

–  Software engineering

–  Requirements Engineering, Requirements reuse in particular

–  Model transformations

–  Programming Languages

•  Contact:

–  Office: Rm. 1809, Science Blg #1

–  Email：
zhhy@sei.pku.edu.cn

–  Phone：
62757670

About Prof. Xiong

•  2009: PhD, Univ. of Tokyo

•  2009-2011: Postdoc, Univ. of Waterloo

•  2012: 百人计划研究员, Peking Univ.

•  Research Interest

–  Software Engineering

–  Programming Languages

•  Contact:

–  理科一号楼1431房间
–  Mail：xiongyf@pku.edu.cn

–  Tel：62757008

7

Course Overview

8

What is this course about?

•  Study fundamental (formal) approaches to
describing program behaviors that are both
precise and abstract.

–  precise so that we can use mathematical tools to
formalize and check interesting properties

–  abstract so that properties of interest can be discussed
clearly, without getting bogged down in low-level details

9

What you can get out of this course?

•  A more sophisticated perspective on programs,
programming languages, and the activity of
programming

–  How to view programs and whole languages as formal,

mathematical objects

–  How to make and prove rigorous claims about them

–  Detailed study of a range of basic language features

•  Powerful tools/techniques for language design,
description, and analysis

10

This course is not about …

•  An introduction to programming

•  A course on compiler

•  A course on functional programming

•  A course on language paradigms/styles

11

All the above are certainly helpful for your

deep understanding of this course.

What background is required?

•  Basic knowledge on

–  Discrete mathematics: sets, functions, relations, orders

–  Algorithms: list, tree, graph, stack, queue, heap

–  Elementary logics: propositional logic, first-order logic

•  Familiar with a programming language and basic
knowledge of compiler construction

12

Textbook

•  Types and Programming Languages

•  作者: Benjamin Pierce

•  出版社: The MIT Press

•  出版年: 2002-02-01

•  ⻚页数: 648

•  定价: USD 72.00

•  装帧: Hardcover

•  ISBN: 9780262162098

13

Let us see how much we can cover in one semester in PKU.

Outline

•  Basic operational semantics and proof techniques

•  Untyped Lambda calculus

•  Simple typed Lambda calculus

•  Simple extensions (basic and derived types)

•  References

•  Exceptions

•  Subtyping

•  Recursive types

•  Polymorphism

•  [Higher-order systems]

14

Grading

•  Activity in class: 20%

•  Homework: 40%

•  Final (Report/Presentation?): 40%

15

How to study this course?

•  Before class: scanning through the chapters to
learn and gain feeling about what will be studied

•  In class: trying your best to understand the
contents and raising hands when you have
questions

•  After class: doing exercises seriously

16

Personnel

•  Instructors

–  Haiyan Zhao, Associate Professor, PKU

 zhhy@sei.pku.edu.cn

–  Yingfei Xiong, Assistant Professor, PKU

 xiongyf@pku.edu.cn

–  Zhenjiang Hu, Professor, NII/PKU

 hu@nii.ac.jp

•  Teaching Assistant:

–  Jun Li, PhD student, PKU

 lijun09@sei.pku.edu.cn

17

Information

•  Course website:

 http://sei.pku.edu.cn/~xiongyf04/DPPL/2014.htm

–  Syllabus

–  News/Announcements

–  Lecture Notes (slides)

–  Other useful resources

18

Chapter 1: Introduction

What is a type system?

What type systems are good for?

Type Systems and Programming Languages

What is a type system (type theory)?

•  A type system is a tractable syntactic method for
proving the absence of certain (bad) program
behaviors by classifying phrases according to the
kinds of values they compute.

–  Tools for program reasoning

–  Classification of terms

–  Static approximation

–  Proving the absence rather than presence

–  Fully automatic (and efficient)

What are type systems good for?

•  Detecting Errors

–  Many programming errors can be detected early, fixed

intermediately and easily.

•  Abstraction

–  type systems form the backbone of the module languages:
an interface itself can be viewed as “the type of a module.”

•  Documentation

–  The type declarations in procedure headers and module

interfaces constitute a form of (checkable) documentation.

•  Language Safety

–  A safe language is one that protects its own abstractions.

•  Efficiency

–  Removal of dynamic checking; smart code-generation

Type Systems and Languages Design

•  Language design should go hand-in-hand with type
system design.

–  Languages without type systems tend to offer features

that make typechecking difficult or infeasible.

–  Concrete syntax of typed languages tends to be more
complicated than that of untyped languages, since type
annotations must be taken into account.

In typed languages the type system itself is often
taken as the foundation of the design and the
organizing principle in light of which every other aspect
of the design is considered.

Homework

•  Read Chapters 1 and 2.

•  Install OCaml and read “Basics”

–  http://caml.inria.fr/download.en.html

–  http://ocaml.org/learn/tutorials/basics.html

23

