
Design Principles of Programming Languages

Recursive Types

Zhenjiang Hu, Haiyan Zhao, Yingfei Xiong

Peking University, Spring Term, 2014

Review: Why learn type
theories?
• Art vs. Knowledge

• Art cannot be taught, while knowledge can
• What people have invented
• How to interpret them abstractly
• How to reason their properties formally

• Why formal reasoning important
• Poorly designed languages widely used

• Java array flaw
• JavaScript: google “JavaScript sucks”
• PHP: you know it

• Well designed language needs strictly reasoning
• Devils in details

2

Review: what have we
learned so far?
• 𝜆-calculus: function and data can be treated the

same

• Types: annotations for preventing bugs
• All terms can be typed: functions, statements, etc.

• Safety=Progress+Preservation

• Non-nominal types: can we do better than Java?

• Subtypes: what if a term has more than one type?

3

What in the latter half of the
course?
• Recursive types

• from finite world to infinite world
• theory of induction and coinduction

• Type Inference
• Polymorphism

• theoretical base for generics
• System F: an important system for academic study

• Do come to class
• Will be much harder than the first half!
• The book is not perfect.
• Class performance will be part of your final score

4

Defining a linked list

• Implementing in Java
class ListNode {

int value;

ListNode next;

}

• Implementing in fullSimple
• NatList = <nil:Unit, cons:{Nat,NatList}>;

• nil = <nil=unit> as NatList;

• cons = lambda n:Nat. lambda l:NatList.
<cons={n,l}> as NatList;

5

Compiling
• natlist.f

NatList = <nil:Unit, cons:{Nat,NatList}>;

nil = <nil=unit> as NatList;

cons = lambda n:Nat. lambda l:NatList.
<cons={n,l}> as NatList;

6

Why?

• Source of Parser.mly
AType :

…

| UCID

{ fun ctx ->

if isnamebound ctx $1.v then

TyVar(name2index $1.i ctx $1.v, ctxlength ctx)

else

TyId($1.v) }

…

• Second NatList is parsed as a new TyId
• NatList = <nil:Unit, cons:{Nat,NatList}>;

7

Recursive Types

• Useful in defining complex types

• Need special mechanism to support

• This course is about
• How useful recursive types are

• How to support recursive types

8

Defining Recursive Types

• Using operator 𝜇
• NatList = 𝜇X. <nil:Unit, cons:{Nat,X}>

• Meaning: X = <nil:Unit, cons:{Nat,X}>.

• Constructors of NatList

9

NatList Functions

10

Can we define an infinite list
in NatList?
• 1, 2, 1, 2, 1, 2, 1, 2, …

• infList = fix (𝜆f. cons 1 (cons 2 f))

• hd (tl (tl infList)) //get the 3rd element

• Unfortunately, will diverge
• why?

11

Review: Reduction Order

• Full beta-reduction
• any redex may be reduced at any time

• Normal Order
• leftmost, outmost redex is reduced first

• Call by name
• Normal Order + No reduction inside abstractions

• Call by value (used in the book)
• Only outmost redexes are reduced
• Parameters need to be values

• infList = fix (𝜆f. cons 1 (cons 2 f))

• hd (tl (tl infList)) //get the 3rd element

12

Interlude: Why do we need
infinite lists?
• Computers can only perform finite computations

• Answer
• Because we can
• Because it is cool
• Because it could be more structural and reusable

• Example: find the largest i where ith element in Fibonacci
sequence is smaller than C

13

Java version:
int index = 0, v1=0, v2=1;
while (v1 < C) {
int t = v1+v2;
v1=v2;
v2=t;
index++;

}
return index;

Haskell version:
fib = 0 : scanl (+) 1 fib
length takeWhile (< C) fib

Recursive Functional Types

• What is this function type about?

• Returning elements in an infinite sequence one by
one
• Continuation

• Java counterpart: iterator
• With a mutable state

14

A Fibonacci stream

Stream = 𝜇X. Unit->{X, Nat};

fibonacci =
let fib = fix (𝜆f:Nat->Nat->Stream.

𝜆 x:Nat. 𝜆 y:Nat.
𝜆 _:Unit. {f y (plus x y), x})

in
fib 0 1;

• Why not diverge?

15

Exercies

• Change Stream to represent both finite and infinite
list

• Two functions “nil” and “cons” for list constructions

• Construct the following two list in your
implementation
• 01

• 1212121212…

16

List with infinite members

• InfList = Rec X.
<infNil:Unit, infCons:{Nat,Unit->X}>;

• infNil = <infNil=unit> as InfList;

• infCons =
lambda n:Nat. lambda l:Unit->InfList.
<infCons={n,l}> as InfList;

• infList = fix (𝜆f.
infCons 1
(𝜆_:Unit.(infCons 2 (𝜆_:Unit.f))))

17

Hungry Function

• Stupid yet simple function. Will be used to discuss
the properties of recursive types.

• Hungry = 𝜇A. Nat→A;

• f = fix (𝜆f: Hungry. 𝜆n:Nat. f);

18

Functional Objects

19

Review: fixed-point
combinator
• Law: fix f = f (fix f)

• Y Combinator

• Use of Y Combinator: calculating Σ𝑖=0
𝑛 𝑖

f = 𝜆f. 𝜆n.

if (iszero n) then 0

else n + f (n – 1)

Y f

20

(fix f)

Review: fixed-point
combinator

21

• Why fix is used instead of Y?

Answer

• Under full beta-reduction: Let f : 𝑇 → 𝑇
• When T is a function type

• Fix and Y are equal: 𝜆𝑦 𝑥 𝑥 𝑦 𝑣 = 𝑥 𝑥 𝑣 = 𝑓𝑖𝑥 𝑓 𝑣

• Else
• (Fix f) will stuck, while (Y f) will diverage

• Not under call-by-value because
• (x x) is not a value
• while (𝜆y. x x y) is
• Y will diverge for any f

22

Review: fixed-point
combinator

23

• Can we define Y in simple typed 𝜆-calculus?
• No

• x has a recursive type

• Y was defined as a special language primitive

Defining fix using recursive
types

24

• T is the type of the recursive function

• Q: Do languages with recursive types have strong
normalization property?
• Strong normalization: well-typed program will terminate

• A: No, because 𝑌𝑇 can be defined

𝑌𝑇

𝑌𝑇

Defining Lambda Calculus

• Read the book

25

Implementation Problem 1

• Hungry = 𝜇A. Nat→A;

• h = fix (𝜆f: Nat→ Hungry. 𝜆n:Nat. f);

• What is the type of h?
• Hungry?

• Nat→Hungry?

• Nat→Nat→Hungry?

26

Simple but Effective Solution

• Every term has one type

• Use fold/unfold to convert between types

• h = fix (𝜆f: Nat→ Hungry. 𝜆n:Nat. f)
• h: Nat→ Hungry

• fold[Hungry] h: Hungry

• unfold[Hungry] (h 1): Nat→ Hungry

27

Iso-recursive Types

28

Example

• NatList = 𝜇X. <nil:Unit, cons:{Nat,X}>

• NLBody = <nil:Unit,
cons:{Nat,NatList}>

• nil = fold [NatList](<nil=unit> as
NLBody);

• cons = 𝜆n:Nat. 𝜆l:NatList.
fold[NatList] <cons={n,l}> as NLBody

29

Example

30

Iso-recursive types

• Used in many languages
• Java, Haskell, Ocaml, etc.

• Fold/unfold can be omitted by special design
• Only recursive types over data types, not functions

• Provide member access functions
• Java: user declared functions

• Haskell, Ocaml: the functions in the previous example are
automatically generated

• C#: nominal function types.
• “delegate int A()” and “delegate int B()” are different

31

Implementation Problem 2

• Even <: Nat

• A = 𝜇X.Nat→(Even×X)

• B = 𝜇Y.Even→(Nat×Y)

• What is the subtype relation between A and B?
• A <: B?

• B <: A?

• No relation?

32

Subtyping by assumption

•
Σ,𝑋<:𝑌⊢𝑆<:𝑇

Σ⊢𝜇𝑋.𝑆<:𝜇𝑌.𝑇

• Example:
• Even <: Nat
• A = 𝜇X.Nat→(Even×X)
• B = 𝜇Y.Even→(Nat×Y)

• Assuming X<:Y
• We have Nat→(Even×X) <: Even→(Nat×Y)
• Thus A <: B

• Why this works? Principle of safe substitution.

• Its implementing algorithm will be explained in the next
course

33

Homework

• Defining a function f:NatList->Stream that returns the
elements in the NatList one by one, and returns 0 if the list
is empty.
• Implement and test your function both in fullisorec and fullequirec.
• Please submit an electronic version with several test cases so that

the teaching assistants can easily verify your implementation.

• Implement Y combinator in your favoriate language except
Ocaml
• Your implementation will be limited by the expressiveness of the

language, but should support (fix f) where f:(Nat->Nat)->(Nat->Nat)
• Your implementation should contain test cases for the teaching

assistants to easily verify your implementation
• Hint: wrap functions in data types, like Java interface
• Please submit electronically

34

