

Design Principles of Programming Languages

Recursive Types

Zhenjiang Hu, Haiyan Zhao, <u>Yingfei Xiong</u> Peking University, Spring Term, 2014

Review: Why learn type theories?

- Art vs. Knowledge
 - Art cannot be taught, while knowledge can
 - What people have invented
 - How to interpret them abstractly
 - How to reason their properties formally
- Why formal reasoning important
 - Poorly designed languages widely used
 - Java array flaw
 - JavaScript: google "JavaScript sucks"
 - PHP: you know it
 - Well designed language needs strictly reasoning
 - Devils in details

Review: what have we learned so far?

- λ -calculus: function and data can be treated the same
- Types: annotations for preventing bugs
 - All terms can be typed: functions, statements, etc.
 - Safety=Progress+Preservation
- Non-nominal types: can we do better than Java?
- Subtypes: what if a term has more than one type?

What in the latter half of the course?

- Recursive types
 - from finite world to infinite world
 - theory of induction and coinduction
- Type Inference
- Polymorphism
 - theoretical base for generics
 - System F: an important system for academic study
- Do come to class
 - Will be much harder than the first half!
 - The book is not perfect.
 - Class performance will be part of your final score

Defining a linked list

• Implementing in Java

```
class ListNode {
    int value;
    ListNode next;
}
```

- }
- Implementing in fullSimple
 - NatList = <nil:Unit, cons:{Nat,NatList}>;
 - nil = <nil=unit> as NatList;
 - cons = lambda n:Nat. lambda l:NatList.
 <cons={n,l}> as NatList;

Compiling

• natlist.f

NatList = <nil:Unit, cons:{Nat,NatList}>; nil = <nil=unit> as NatList; cons = lambda n:Nat. lambda l:NatList. <cons={n,l}> as NatList;

Why?

• Source of Parser.mly

AType :

```
...
| UCID
{ fun ctx ->
    if isnamebound ctx $1.v then
       TyVar(name2index $1.i ctx $1.v, ctxlength ctx)
       else
       TyId($1.v) }
```

- •••
- Second NatList is parsed as a new Tyld
 - NatList = <nil:Unit, cons:{Nat,NatList}>;

Recursive Types

- Useful in defining complex types
- Need special mechanism to support
- This course is about
 - How useful recursive types are
 - How to support recursive types

Defining Recursive Types

- Using operator μ
 - NatList = μ X. <nil:Unit, cons:{Nat,X}>
 - Meaning: X = <nil:Unit, cons:{Nat,X}>.
- Constructors of NatList

```
nil = <nil=unit> as NatList;
```

▶ nil : NatList

```
cons = \lambdan:Nat. \lambdal:NatList. <cons={n,l}> as NatList;
```

• cons : Nat \rightarrow NatList \rightarrow NatList

NatList Functions


```
isnil = λl:NatList. case l of
<nil=u> ⇒ true
| <cons=p> ⇒ false;
```

```
▶ isnil : NatList → Bool
```

hd = λ 1:NatList. case 1 of <ni1=u> \Rightarrow 0 | <cons=p> \Rightarrow p.1;

• hd : NatList \rightarrow Nat

tl = λ l:NatList. case l of <nil=u> \Rightarrow l | <cons=p> \Rightarrow p.2;

• tl : NatList \rightarrow NatList

Can we define an infinite list in NatList?

- 1, 2, 1, 2, 1, 2, 1, 2, ...
- infList = fix (λ f. cons 1 (cons 2 f))
- hd (tl (tl infList)) //getthe 3rd element
- Unfortunately, will diverge
 - why?

Review: Reduction Order

- Full beta-reduction
 - any redex may be reduced at any time
- Normal Order
 - leftmost, outmost redex is reduced first
- Call by name
 - Normal Order + No reduction inside abstractions
- Call by value (used in the book)
 - Only outmost redexes are reduced
 - Parameters need to be values
- infList = fix (λ f. cons 1 (cons 2 f))
- hd (tl (tl infList)) //getthe 3rd element

Interlude: Why do we need infinite lists?

- Computers can only perform finite computations
- Answer
 - Because we can
 - Because it is cool
 - Because it could be more structural and reusable
- Example: find the largest i where ith element in Fibonacci sequence is smaller than C

```
Java version:
    int index = 0, v1=0, v2=1;
    while (v1 < C) {
        int t = v1+v2;
        v1=v2;
        v2=t;
        index++;
    }
    return index;
```

Haskell version:

fib = 0 : scanl (+) 1 fib
length takeWhile (< C) fib</pre>

Recursive Functional Types

• What is this function type about?

Stream = μA . Unit \rightarrow {Nat, A};

- Returning elements in an infinite sequence one by one
 - Continuation
- Java counterpart: iterator
 - With a mutable state

A Fibonacci stream


```
Stream = \mu X. Unit->{X, Nat};
```

• Why not diverge?

Exercies

- Change Stream to represent both finite and infinite list
- Two functions "nil" and "cons" for list constructions
- Construct the following two list in your implementation
 - 01
 - 1212121212...

List with infinite members

- InfList = Rec X.
 <infNil:Unit, infCons:{Nat,Unit->X}>;
- infNil = <infNil=unit> as InfList;
- infCons =
 lambda n:Nat. lambda l:Unit->InfList.
 <infCons={n,l}> as InfList;

Hungry Function

- Stupid yet simple function. Will be used to discuss the properties of recursive types.
 - Hungry = μA . Nat $\rightarrow A$;
 - f = fix (λ f: Hungry. λ n:Nat. f);

Functional Objects

Counter = μ C. {get:Nat, inc:Unit \rightarrow C, dec:Unit \rightarrow C};

c = let create = fix (λ f: {x:Nat} \rightarrow Counter. λ s: {x:Nat}. {get = s.x, inc = λ_{-} :Unit. f {x=succ(s.x)}, dec = λ_{-} :Unit. f {x=pred(s.x)} }) in create {x=0};

c : Counter

c1 = c.inc unit; c2 = c1.inc unit; c2.get;

▶ 2 : Nat

Review: fixed-point combinator

- Law: fix f = f (fix f)
- Y Combinator

$$Y = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$$

(fix f)

• Use of Y Combinator: calculating $\sum_{i=0}^{n} i$

$$f = \lambda f. \lambda n.$$

if (iszero n) then 0
else n + f (n - 1)
Y f

Review: fixed-point combinator

$$Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))$$

fix = $\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))$

• Why fix is used instead of Y?

Answer

fix = $\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))$

 $Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))$

- Under full beta-reduction: Let $f: T \rightarrow T$
 - When T is a function type
 - Fix and Y are equal: $(\lambda y (x x) y) v = (x x) v = (fix f) v$
 - Else
 - (Fix f) will stuck, while (Y f) will diverage
- Not under call-by-value because
 - (x x) is not a value
 - while $(\lambda y. x x y)$ is
 - Y will diverge for any f

Review: fixed-point combinator

fix = λf . (λx . f (λy . x x y)) (λx . f (λy . x x y)) Y = λf . (λx . f (x x)) (λx . f (x x))

- Can we define Y in simple typed λ -calculus?
 - No
 - x has a recursive type
 - Y was defined as a special language primitive

Defining fix using recursive types

- $$\begin{split} Y_T &= \lambda \texttt{f}: \mathsf{T} \to \mathsf{T}. \quad (\lambda \texttt{x}: (\mu \texttt{A}.\texttt{A} \to \mathsf{T}). \ \texttt{f} \ (\texttt{x} \ \texttt{x})) \quad (\lambda \texttt{x}: (\mu \texttt{A}.\texttt{A} \to \mathsf{T}). \ \texttt{f} \ (\texttt{x} \ \texttt{x})) \\ Y_T &: (\mathsf{T} \to \mathsf{T}) \ \to \ \mathsf{T} \end{split}$$
- T is the type of the recursive function
- Q: Do languages with recursive types have strong normalization property?
 - Strong normalization: well-typed program will terminate
- A: No, because Y_T can be defined

Defining Lambda Calculus

• Read the book

Implementation Problem 1

- Hungry = μA . Nat $\rightarrow A$;
- h = fix (λ f: Nat \rightarrow Hungry. λ n:Nat. f);
- What is the type of h?
 - Hungry?
 - Nat→Hungry?
 - Nat→Nat→Hungry?

Simple but Effective Solution

- Every term has one type
- Use fold/unfold to convert between types
- h = fix (λ f: Nat \rightarrow Hungry. λ n:Nat. f)
 - h: Nat \rightarrow Hungry
 - fold[Hungry] h: Hungry
 - unfold[Hungry] (h 1): Nat \rightarrow Hungry

Iso-recursive Types

$\rightarrow \mu$		Exter	$ds \lambda_{\rightarrow} (9-1)$
t ::= fold[T]t unfold[T]t	terms: folding unfolding	$\frac{\texttt{t}_1 \longrightarrow \texttt{t}_1'}{\texttt{fold} \texttt{[T]} \texttt{t}_1 \longrightarrow \texttt{fold} \texttt{[T]} \texttt{t}_1'}$	(E-Fld)
v ::= fold[T] v	values: folding	$\frac{\texttt{t}_1 \rightarrow \texttt{t}_1'}{\texttt{unfold} \; [\texttt{T}] \; \texttt{t}_1 \rightarrow \texttt{unfold} \; [\texttt{T}] \; \texttt{t}_1'}$	(E-Unfld)
		New typing rules	$\Gamma \vdash t:T$
$\begin{array}{c} T & ::= & \dots \\ & X \\ & \mu X \cdot T \end{array}$	types: type variable recursive type	$\frac{U=\muX.T_1\qquad\Gamma\vdasht_1:[X\mapstoU]T_1}{\Gamma\vdashfold[U]t_1:U}$	(T-Fld)
New evaluation rules	$t \rightarrow t'$	$\frac{U = \mu X \cdot T_1 \qquad \Gamma \vdash t_1 : U}{\Gamma \vdash unfold [U] t_1 : [X \mapsto U] T_1}$	(T-Unfld)
unfold [S] (fold [T] v_1) –	$\rightarrow V_1$		
	(E-UNFLDFLD)		

Figure 20-1: Iso-recursive types ($\lambda \mu$)

Example

- NatList = μ X. <nil:Unit, cons:{Nat,X}>
- NLBody = <nil:Unit, cons:{Nat,NatList}>
- nil = fold [NatList](<nil=unit> as
 NLBody);
- cons = λn:Nat. λl:NatList.
 fold[NatList] <cons={n,l}> as NLBody

Example


```
isnil = \lambda l: NatList.
             case unfold [NatList] 1 of
                <nil=u> ⇒ true
              | < cons = p > \Rightarrow false;
hd = \lambda]:NatList.
          case unfold [NatList] 1 of
             \langle nil=u \rangle \Rightarrow 0
           | < cons = p > \Rightarrow p.1;
t] = \lambda]:NatList.
          case unfold [NatList] 1 of
             < nil=u > \Rightarrow l
           | \langle cons=p \rangle \Rightarrow p.2;
```


Iso-recursive types

- Used in many languages
 - Java, Haskell, Ocaml, etc.
- Fold/unfold can be omitted by special design
 - Only recursive types over data types, not functions
 - Provide member access functions
 - Java: user declared functions
 - Haskell, Ocaml: the functions in the previous example are automatically generated
 - C#: nominal function types.
 - "delegate int A()" and "delegate int B()" are different

Implementation Problem 2

- Even <: Nat
- A = μ X.Nat \rightarrow (Even \times X)
- B = μ Y.Even \rightarrow (Nat \times Y)
- What is the subtype relation between A and B?
 - A <: B?
 - B <: A?
 - No relation?

Subtyping by assumption

- $\Sigma, X <: Y \vdash S <: T$
- $\Sigma \vdash \mu X.S \lt: \mu Y.T$
- Example:
 - Even <: Nat
 - A = μ X.Nat \rightarrow (Even \times X)
 - B = μ Y.Even \rightarrow (Nat \times Y)
 - Assuming X<:Y
 - We have $Nat \rightarrow (Even \times X) \iff Even \rightarrow (Nat \times Y)$
 - Thus A <: B
- Why this works? Principle of safe substitution.
- Its implementing algorithm will be explained in the next course

Homework

- Defining a function f:NatList->Stream that returns the elements in the NatList one by one, and returns 0 if the list is empty.
 - Implement and test your function both in fullisorec and fullequirec.
 - Please submit an electronic version with several test cases so that the teaching assistants can easily verify your implementation.
- Implement Y combinator in your favoriate language except Ocaml
 - Your implementation will be limited by the expressiveness of the language, but should support (fix f) where f:(Nat->Nat)->(Nat->Nat)
 - Your implementation should contain test cases for the teaching assistants to easily verify your implementation
 - Hint: wrap functions in data types, like Java interface
 - Please submit electronically

