Metatheory of Recursive
Types

Zhenjiang Hu, Haiyan Zhao, Yingfei Xiong

Peking University, Spring Term, 2014

" HEAD aa
N | | Eiisssss
| Mnticacl laiosts ol Inormalics|

Equi-recursive approach

* Do not use explicit fold/unfold

* If type A can be constructed from type B by
applying only fold and/or unfold, A and B are equal

* Example: the following three types are equal
* Hungry
* Nat—Hungry
* Nat—>Nat—>Hungry

, N | | sz
Moo latieats of Indermetin

Solution

 Alternative 1: Deduce all equal types for a term
* possibly infinite number of types

; N | | ezmsZaiss

Solution

 Alternative 1: Deduce all equal types for a term
* possibly infinite number of types

 Alternative 2: use algorithms to determine the
subtyping relations

* An algorithm to determine if type A is a subtype of type
B

* We do not need an algorithm to determine the equality
of two types

* |t can be deduced from subtyping relations
e AKtBAB<:A-A=B
* It will never be used

El _|';| "|:—_|
4 NI 1“:'1

Iso-recursive Subtyping

T<: Top Even <: Nat

S1<: Ty So <: T T < Sy So < To
S XS < Ty XT» S1—=So <t T1—1>

S X<:YES< T
S e ouX.S < ouY.T

; \ || e

Without the last rule:
A Derivation Tree

Even <:Nat Even <:Nat
Even <:Nat Even X Even <:Nat X Nat

~.

Nat - (Even X Even) <:Even — (Nat X Nat)

: N | | ezmsZaiss

With the last rule:
A Derivation Graph

Even <:Nat

\

Even <:Nat Even X X <:Nat XY

~.

Nat —» (Even X X) <:Even - (Nat X Y)

l %X <:Y
uX.Nat - (Even X X) <:uY.Even — (Nat X Y)

, N | | ezmsZaiss

The premise function

. se(S <:T) =
(remlse(q))

if T=TopV (S =Even AT = Nat)
{§1 <:Ty, S, <:T,} if S=8S; XS AT =T, XT,
1{T; <:51, 5, <: Ty} ifS=85->5AT=T,-T,
{51 <: Ty} if S=uX.S{ANT =uX. Ty
\ T otherwise

« premise(X) =
Uyex premise(x) if Vx € X.premise(x) |
T otherwise

8 N I EI R EREPh
[Fotiomcl inctitute. of bnigsmatics

The derivation function

e derivation(S <:T) =
(S<T,X<Y} if S=uX.SyNT =uY. Ty
{§ <: T} otherwise

 derivation(X) = U, ey derivation(x)

W LR) L] LR
. \ || e

The subtyping algorithm

 gfp(X)=if premise(X)T then false
else premise(X)Ederivation(X) then true
else gfp(premise(X)UX)

* isSubtype(S<:T)=gfp({S<:T})

" \ || e
| Modionol luiess. o bdonmeadics

Termination

e X grows larger in every iteration

* Function premise() only produce subexpressions
* subexpression: a sub tree in the AST

* There are finite number of subexpressions for a type

Even <:Nat

Even <:Nat Even X X <:Nat XY

~.

Nat — (Even X X) <:Even — (Nat XY)

) X<
uX.Nat - (Even x X) <:uY.Even - (Nat X Y) N "r_u..hTrm 7

11 Moo latieats of Indermetin

Problems of Equi-recursive
types

* Let
« XX=uX.Nat - (Even X X)
* YY=uY.Even - (Nat XY)

* What if isSubtype(XX <: Even —» (Nat X YY))?

. \ || e

Changing the typing rule

DAY RS<I T
2= uX.S <

S,S <:uY.T+S<:[Y - uY.TIT
SFS<uY.T

S uX.S <:T F [X - uX.S|S <:T
SFuX.S<:T

13

NI

El LI tR ¥R T

Future simplify

YrS< T
2= uX.S <

S<[Y->uY.T|T
S<:uY.T

[X - uX.S1S <:T
uX.S <:T

What is the derviation graph of XX <: Even —» (Nat X YY)?

14

New Derivation Graph

Even <:Nat XX <:YY

Even <:Nat Even X XX <:Nat XYY

~.

Nat — (Even X XX) <:Even — (Nat X YY)

|

XX <:Even —» (Nat X YY)

15

Support Function

* supportg (S <:T) =

(0 if T=TopV (S =Even AT = Nat)
{§1 <:Ty,5, <: Ty} if S=S, XS5 AT =T; XT,
< {T; <:5.,5, <:T,} ifS=85->5ANT=T,-T,
{S <:[X o uX.T{]T4} if T =uX. Ty
([X > uX.S$;1S; <:T} if S=pX.S AT # uX.Ty, T # Top
L T otherwise

* supports (X) =
Uyxex sSupports (x) if Vx € X.supports_(x) 1
T otherwise

16 N I r'_n'_T||5E"£?- .Fi_.r
I:"_"I_""TT_'_']

The algorithm

gfp(X) = if support(X) 1, then false
else if support(X) c X, then true
else gfp(support(X) U X).

. N | | ezmsZaiss

Uncontractive Types

* Type uX. uXq. uX, ... uXy. X

* Meaningless type
* All uncontractive types are equal

fie
e N I "'—"I-""TTI'_'_"J

Termination

e X grows larger in every iteration

e Sis a subexpression of T either
e Sforms asub tree inthe AST of T
e Sforms a sub tree in the AST of [X — uX.T;|T; if
T=uX.Ty
* All pairs produced by supports () are
subexpressions of the original one

* There is only a finite number of subexpressions

E RS ERTERR
19 N I I [Heoncl iasiiss of intormati|

Inversible Subtyping Rules

* Functions premise/support requires the subtyping
rules are inversible:

* There is only one set of premise for each conclusion

* The algorithm will be much more complex is the
subtyping rules are not inversible

* Example: uninversible rules

S<: U U<: T
S<: T

S<:[Y->uY.T|IT
S<uY.T

S<:Top

[X - uX.S1S <: T
T1 <: 51 52 <. T2 X.S T
51—-52 <: Tl—*Tz Ha- <

; Lo
20 N | | Eiisssnzs

Inversible Subtyping Rules

* Functions premise/support requires the subtyping
rules are inversible:

* There is only one set of premise for each conclusion

* The algorithm will be much more complex is the
subtyping rules are not inversible

* Example: uninversible rules

S<: U U<: T
S<: T

S<:[Y->uY.T|IT
S<uY.T

S<:Top

T < s, S, < T [X - uX.S|S <:TAT #uY. Ty AT +#TOP
S-S, <t T1—=T> uX.S <:T

; Lo
21 N | | Eiisssnzs

Exercise

* Find two types S<:T where S<:T does not hold in
iso-recursive types (even with the help of
fold/unfold) but holds in equi-recursive types.

- \ || e

Exercise

* Find two types S<:T where S<:T does not hold in
iso-recursive types (even with the help of
fold/unfold) but holds in equi-recursive types.

e S =uX.Nat X X
T =uX.Nat X (Nat X X)

- \ || e
| Modionol luiess. o bdonmeadics

Fixpoints, Induction, anad
Coinduction

Fixed points

* The fixed point of a function f:T—T, is a value (fix
f)ET satisfying the following condition:

o fix f =f (fix f)

* When T is a function type
* fix fis a recursive function
* Y and fix combinators produce such fixed point

* When T is not a function
* Y and fix combinators no longer work

|_ i ER 3
25 N I r'il""TTI'

Review: Terms, by Inference
Rules

The set of terms is defined by the following rules:

truee T falsee T 0eT
T.'.]ET tlET tlET
succt; €T predt; €T iszerot; €T

teT t, e T ty €T
if t; then ty elset; € T

Inference rules = Axioms + Proper rules

N"r“hf o
""-"I-"'TT'_-I

Review: Terms, Concretely

For each natural number i, define a set S, as follows:

So = {J
Sis1 {true, false, 0}
W {succ ty,predt;,iszerot; | t; € §;}

J {ift; then t; else t3 | t1, ts, t3 € §;}.

Finally, let s = US.

N I r'—-'- ||f"!—.'- F.J
"'_"I_""TI'_'_"J

Generating Function

* f(X) = {true, false, O}
U {succ tq, pred tq, iszero t; | t; € X}
U {if t; thent, else t3 | t1,t,,t3; € X}

*S=Uf"(9)
* We will show that S is the least fixed point of f

- \ || e
| Modionol luiess. o bdonmeadics

Monotone function and
closed sets

 Monotone function: f : P(U)—P(U) is monotone iff
s VX, Y:XCY =f(X) S f(Y)

e Llet f:P(U) » P(U), Xisf-closedif f(X) C X.

29

Knaster-Tarski Theorem

e Knaster-Tarski Theorem

 The intersection of all f-closed sets is the least fixed
point of monotone function f, denoted Ifp(f).

* Proof:

* Let K be the intersection of all f-closed sets

* Let A be an arbitrary f-closed set
KSA->f(K)Scf(A)->f(K)S A
Since A can be any f-closed set, f(K) € K
f(K) S K- f(f(K)) C f(K) = f(K)isf-closed— K € f(K)
Therefore f(K) = K
K is the least because any fixed point is f-closed

; Lo
30 N | | Eiisssnzs

Principle of Induction

o If Xis f-closed, then Ifp(f) € X.

* ProvingS=Uf"™(®) = lfp(f)
* < lfp(f) = (@) € Ifp(f) foranyn
* Thus, S € Ifp(f)
* Let A S B,wehave f(AUB) = f(A) U f(B)
* From @ < f(0), we have f™(@) < f™*(®) for any n
« £(S) =fFUFY@) =Uf*(@) =S, e.g., Sis f-closed
*lfp(f)ES

N I I o L e
31 Mol lastiute of iormatis

Proving Mathematical
nduction

* Mathematical induction
1. Show P holds for case n=0
2. When P holds for case n=k, show P holds for case n=k+1
3. P holds for any natural number

elet f(X) ={0}U{i+1]i€ X} Wehave Ifp(f)is the
whole set of natural numbers

. IIaet PP be the set of natural number where P holds. We
ave

e 0ePPNiEPP—->i+1€PP
e PPis f-closed

* Ifp(f) < PP

E RS ERTERR
32 NI [Heoncl iasiiss of intormati|

Infinite Values

 Let f(X)={nil}U{cons it | iENat, teX}

e What is in Ifp(X)?

. N | T b

Principle of Coinduction

e Let f: P(U) —» P(U), Xis f-consistent if X C f(X).

* The dual of Knaster-Tarski Theorem

* The union of all f-consistent sets is the greatest fixed
point of monotone function f, denoted gfp(f).

* Proof: By duality

* Principle of Coinduction

* If X is f-consistent, then X € gfp(f).
* Proof: By duality

B HIR LR
34 N I I (lotioact lastisste ol bniormetics

Infinite Members and
Greatest Fixed Point

* gfp(f) = Nf™(U),n is any natural number
is the greatest fixed point of the monotone
function f and the universal set U

 Let f(X)={nil}U{cons it | iENat, teX}, gfp(f) contains
all finite and infinite lists

i w L] K
| Mnticacl laiosts ol Inormalics|

35

Summary

* Rules can be represented as generating functions
* The least fixed point is the set of finite terms

* The greatest fixed point is the set of finite and
infinite terms

* Principles of Induction and Coinduction are useful
in proving theorems
* See book for examples of using principles of coinduction

E RS ERTERR
36 N I I [Heoncl iasiiss of intormati|

Exercise

* Defining a generating function s for the subtyping
relation, where gfp(s) is the set of all pairs of (A, B)
where A<:B

T<:Top
Even <: Nat

S; < Ty So <t To
S1 XS <: Ty XT>

T <5, So <t To
S1—=So < T1—T>

S <:[Y - puY.T|T [X > pX.S1S <:T
S<:uY.T uX.S <:T

. \ || e
| Modionol luiess. o bdonmeadics

Exercise

* Defining a generating function s for the subtyping
relation, where gfp(s) is the set of all pairs of (A, B)
where A<:B

s(R) ={S <: Top | for any type S }
U{{S; XS <: Ty XT, | §1 <:Ty,5, <: T, € R}
U{S; =5, <T; »T,|T; <:54,5, <:T, €ER}
U{S <:uX.T|S <:[X v uX.T]T € R}
U{uX.S <:T | [X— uX.T]S <:T € R}

. \ || e
| Modionol luiess. o bdonmeadics

Homework

* Choose a language with high-order function
support, and investigate
* (1) Whether and how this language supports recursive
types,
* (2) How this support differs from what we learned in the
course, and

* (3) Why this design is adopted for the language.
 Summarize the findings as a report.

E RS ERTERR
39 N I I [Heoncl iasiiss of intormati|

