
Design Principles of Programming Languages

Type Reconstruction

Zhenjiang Hu, Haiyan Zhao, Yingfei Xiong

Peking University, Spring Term, 2014

Type Reconstruction

• A controversial feature
• Pros: less typing, yeah!

• Map<String, List<Pair<Token, SrcInfo>>>

• Cons: more difficult to debug type errors
• No type declaration as central concept

• Yet worth studying
• Understanding the potentials of compilers

• Closely related to polymorphism

2

An Example

• 𝑔 = 𝜆𝑎. 𝜆𝑓. 𝑖𝑠𝑧𝑒𝑟𝑜 𝑓 𝑎

• ℎ = 𝑔 10

• What is the types of a, f, g, h?

3

Introducing Type Variables

• 𝑔 = 𝜆𝑎: 𝑋. 𝜆𝑓: 𝑌. 𝑖𝑠𝑧𝑒𝑟𝑜 𝑓 𝑎

• ℎ = 𝑔 10

4

Generating Constraints

• 𝑔 = 𝜆𝑎: 𝑋. 𝜆𝑓: 𝑌. 𝑖𝑠𝑧𝑒𝑟𝑜 𝑓 𝑎

• ℎ = 𝑔 10

• 𝑌 = 𝑋 → 𝑍0
• 𝑁𝑎𝑡 = 𝑍0
• 𝑋 → 𝑌 → 𝐵𝑜𝑜𝑙 = 𝑁𝑎𝑡 → 𝑍1

5

Unification

• 𝑔 = 𝜆𝑎: 𝑋. 𝜆𝑓: 𝑌. 𝑖𝑠𝑧𝑒𝑟𝑜 𝑓 𝑎

• ℎ = 𝑔 10

• 𝑌 = 𝑋 → 𝑍0
• 𝑁𝑎𝑡 = 𝑍0
• 𝑋 → 𝑌 → 𝐵𝑜𝑜𝑙 = 𝑁𝑎𝑡 → 𝑍1

• 𝑋 = 𝑁𝑎𝑡, 𝑌 = 𝑁𝑎𝑡 → 𝑁𝑎𝑡, 𝑍0 = 𝑁𝑎𝑡, 𝑍1 =
(𝑁𝑎𝑡 → 𝑁𝑎𝑡) → 𝐵𝑜𝑜𝑙

6

By typing rules

• 𝑔 = 𝜆𝑎: 𝑋. 𝜆𝑓: 𝑌. 𝑖𝑠𝑧𝑒𝑟𝑜 𝑓 𝑎

• ℎ = 𝑔 10

• 𝑌 = 𝑋 → 𝑍0

• 𝑁𝑎𝑡 = 𝑍0

• 𝑋 → 𝑌 → 𝐵𝑜𝑜𝑙 = 𝑁𝑎𝑡 → 𝑍1

• 𝑋 = 𝑁𝑎𝑡, 𝑌 = 𝑁𝑎𝑡 → 𝑁𝑎𝑡, 𝑍0 = 𝑁𝑎𝑡, 𝑍1 = (𝑁𝑎𝑡 → 𝑁𝑎𝑡) → 𝐵𝑜𝑜𝑙

• 𝑔:𝑁𝑎𝑡 → 𝑁𝑎𝑡 → 𝑁𝑎𝑡 → 𝐵𝑜𝑜𝑙

• ℎ: 𝑁𝑎𝑡 → 𝑁𝑎𝑡 → 𝐵𝑜𝑜𝑙

7

Type Variables

• New Syntactic Rule
t ::= …

𝜆x. t // untyped lambda abstraction

T ::= …

X // type variables

8

Type Substitution

• A finite mapping from type variables to types
• 𝜎 = 𝑋 ↦ 𝐵𝑜𝑜𝑙, 𝑌 ↦ 𝑁𝑎𝑡 → 𝑁𝑎𝑡

• Note the difference between ↦ and →

• Application of substituation 𝜎

9

Preservation of Typing under
Type Substitution

σ ∶ any type substitution Γ ⊢ t: T

σΓ ⊢ σt: T

• Proof: By induction on typing rules

10

Solution

• A solution for (Γ, t) is a pair (σ, T) such that σΓ ⊢
σt: T

• Problem: which one is better?

11

Principal Types

• Substitution 𝜎 is more general than 𝜎′, written 𝜎 ⊑ 𝜎′ iff
𝜎′ = 𝛾 ∘ 𝜎 for some 𝛾.

• Substitution 𝜎 is more general than 𝜎′ for term 𝑡, written
𝜎 ⊑𝑡 𝜎

′ iff 𝜎′𝑡 = 𝛾(𝜎𝑡) for some 𝛾.

• A most general substitution leads to a principle type

• Which are most general substituions?

12

)

Principal Types

• Substitution 𝜎 is more general than 𝜎′ for term 𝑡, written
𝜎 ⊑𝑡 𝜎

′ iff 𝜎′𝑡 = 𝛾(𝜎𝑡) for some 𝛾.

• A most general substitution leads to a principle type

• Which one is a most general one?
1. Replacing less variables
2. Replacing with less specific types

13

Constraint Set

• A constraint set is a set of equations {𝑆𝑖 = 𝑇𝑖}.

• 𝜎 satisfy C={𝑆𝑖 = 𝑇𝑖} when 𝜎𝑆𝑖 = 𝜎𝑇𝑖 for all i.

14

Constraint Typing Rules

•
𝑥:𝑇∈Γ

Γ⊢𝑥:𝑇∣{}

•
Γ,𝑥:𝑇1⊢𝑡2:𝑇2∣𝐶

Γ⊢𝜆𝑥:𝑇1.𝑡2:𝑇1→𝑇2∣𝐶

•

𝑋 is a fresh type variable
Γ,𝑥:𝑋⊢𝑡:𝑇∣𝐶

Γ⊢𝜆𝑥.𝑡:𝑋→𝑇∣𝐶

•

Γ⊢𝑡1:𝑇1∣𝐶1 Γ⊢𝑡2:𝑇2|𝐶2
𝑋 is a fresh type variable

Γ⊢𝑡1 𝑡2∶𝑋∣𝐶1∪𝐶2∪{𝑇1=𝑇2→𝑋}

•
Γ⊢0:𝑁𝑎𝑡∣{}

•
Γ⊢𝑡𝑟𝑢𝑒:𝐵𝑜𝑜𝑙∣{}

•
Γ⊢𝑓𝑎𝑙𝑠𝑒:𝐵𝑜𝑜𝑙∣{}

•
Γ⊢𝑡1:𝑇∣𝐶

Γ⊢𝑠𝑢𝑐𝑐 𝑡1:𝑁𝑎𝑡∣𝐶∪{𝑇=𝑁𝑎𝑡}

•
Γ⊢𝑡1:𝑇∣𝐶

Γ⊢𝑝𝑟𝑒𝑑 𝑡1:𝑁𝑎𝑡∣𝐶∪{𝑇=𝑁𝑎𝑡}

•
Γ⊢𝑡1:𝑇∣𝐶

Γ⊢𝑖𝑠𝑧𝑒𝑟𝑜 𝑡1:𝑁𝑎𝑡∣𝐶∪{𝑇=𝑁𝑎𝑡}

•

Γ⊢𝑡1:𝑇1∣𝐶1 Γ⊢𝑡2:𝑇2|𝐶2 Γ⊢𝑡3:𝑇3|𝐶3
𝐶′=𝐶1∪𝐶2∪𝐶3∪{𝑇1=𝐵𝑜𝑜𝑙,𝑇2=𝑇3}

Γ⊢𝑖𝑓 𝑡1 𝑡ℎ𝑒𝑛 𝑡2 𝑒𝑙𝑠𝑒 𝑡3:𝑇2∣𝐶′

15

* In the book, the freshness of type
variables are also treated formally in
the rules

Exercise

• Deduce constraints for
• 𝜆𝑓. 𝜆𝑛. 𝑖𝑓 𝑖𝑠𝑧𝑒𝑟𝑜 𝑛 𝑡ℎ𝑒𝑛 𝑓 𝑛 𝑒𝑙𝑠𝑒 𝑛

16

Soundness and Completeness

• Suppose that Γ ⊢ 𝑡: 𝑆 ∣ 𝐶. A solution for (Γ, 𝑡, 𝑆, 𝐶)
is a pair 𝜎, 𝑇 such that 𝜎 satisfies 𝐶 and 𝜎𝑆 = 𝑇.

• Soundness
• If (𝜎, 𝑇) is a solution for (Γ, 𝑡, 𝑆, 𝐶), then it is also a

solution for (Γ, 𝑡).
• Proof: by induction on constraint typing rules

• Completeness
• If 𝜎, 𝑇 is a solution for (Γ, 𝑡), then there exists solution
(𝜎′, 𝑇) for (Γ, 𝑡, 𝑆, 𝐶) where 𝜎 and 𝜎′ are the same for
any type variables in 𝑡.

• Proof: by induction on constraint typing rules

17

Unification Algorithm

18

is

is

is

is is

Soundness

• The unification algorithm returns a most general
substitution if there is one, or fails otherwise.
• Proof: Induction on the number of recursive calls

19

Termination

• Every iteration either
• drop a constraint from C, or

• divide a constraint into smaller constraints

20

Type Reconstruction with
Subtyping
• Constraints containing both <: and =

• Every type variable starts with TOP

• Shrink types to satisfy constraints

• X:Nat, Y:TOP
𝑋=𝑌

X:Nat, Y:Nat

• X:Nat, Y:TOP
𝑋<:𝑌

X:Nat, Y:TOP

• X:Nat, Y:TOP
𝑋:>𝑌

X:Nat, Y:Nat

• Until a fixed point is reached

• Termination
• Types for the variables are always shrink
• Lower bound exist

21

Polymorphism

• let double=𝜆f. 𝜆a. f (f a) in
{

double (𝜆x:Nat. succ (succ x)) 1,
double (𝜆x:Bool x) false

}

• Will this program be type checked?

22

Three types of
polymorphisms
• Polymorphism

• A single interface to different types

• Adhoc Polymorphism
• e.g., case…of…, function overloading
double f:Nat->Nat a:Nat = f (f a)
double f:Bool->Bool a:Bool = f (f a)

• Subtyping
interface function {

Object apply(Object);
Object doubleApply(Object);

}

• Parametric Polymorphism
• e.g., C++ template

23

Hindley-Milner Type System

• A simple polymorphism type system deals with the
previous case

• Widely-used in some mainstream functional
programming languages
• Ocaml, ML, Haskell98.

• Weaker than System-F to be introduced in the next
course
• Type reconstruction is undecidable for System-F.

24

Typing Rules in HM-System

25

Exercise

• What is the type of this program?

• let f = 𝜆x.x in
let g = 𝜆x.f (f x) in
{g 5, g true}

26

Exercise

• What is the type of this program?

• (𝜆f.
let g = 𝜆x.f (f x) in
{g 5, g true}

) (𝜆x.x)

27

Exercise

• What is the type of this program?

• let h= 𝜆x.x in
(𝜆f.
let g = 𝜆x.f (f x) in
{g 5, g true}

) h

28

Inefficiency of the typing
rules
• let double=𝜆f. 𝜆a. f (f a) in

{
double (𝜆x:Nat. succ (succ x)) 1,
double (𝜆x:Bool x) false

}

• The red part is type checked twice

29

A more efficient algorithm

• let double=𝜆f. 𝜆a. f (f a) in
{

double (𝜆x:Nat. succ (succ x)) 1,
double (𝜆x:Bool x) false

}

1. Type check only the “let” part (red) and get its
principle type
• (X→X)→X →X

30

A more efficient algorithm

• let double=𝜆f. 𝜆a. f (f a) in
{

double (𝜆x:Nat. succ (succ x)) 1,
double (𝜆x:Bool x) false

}

1. Type check only the “let” part and get its
principle type
• (X→X)→X →X

2. Introduce quantification for type variables not
used in Γ
• double: ∀X.(X→X)→X →X

31

A more efficient algorithm

• let double=𝜆f. 𝜆a. f (f a) in
{
double (𝜆x:Nat. succ (succ x)) 1,
double (𝜆x:Bool x) false

}

1. Type check only the “let” part and get its principle type
• (X→X)→X →X

2. Introduce quantification for type variables not used in Γ
• double: ∀X.(X→X)→X →X

3. Add it to Γ and type check the body, using an additional
typing rule

𝑡: ∀𝑋1…𝑋𝑛. 𝑇 ∈ Γ 𝑌1…𝑌𝑛 are fresh variables

Γ ⊢ 𝑡: 𝑋1 ↦ 𝑌1 … 𝑋𝑛 ↦ 𝑌𝑛 𝑇

32

A more efficient algorithm

• The informal description does not work with the
formal system in the text book
• Need to reformulate all rules to make it formal

• For full formal description, see Wikipedia page of
“Hindley-Milner type system”

33

Ref variables

• What is the type of the following program?
• let r=ref (𝜆x.x) in

(r:=(𝜆x:Nat, succ x); (!r)true);

34

Ref variables

• What is the type of the following program?
• let r=ref (𝜆x.x) in

(r:=(𝜆x:Nat, succ x); (!r)true);

• HM-system does not work with ref variables

• Disallow polymorphism when the let definition is of
reference type

35

Homework

• Change the constraint typing rule and the
unification algorithm so that the following term can
be typed
• fix (𝜆h. 𝜆x:Nat. h)

36

