

Design Principles of Programming Languages

Type Reconstruction

Zhenjiang Hu, Haiyan Zhao, <u>Yingfei Xiong</u> Peking University, Spring Term, 2014

Type Reconstruction

- A controversial feature
 - Pros: less typing, yeah!
 - Map<String, List<Pair<Token, SrcInfo>>>
 - Cons: more difficult to debug type errors
 - No type declaration as central concept
- Yet worth studying
 - Understanding the potentials of compilers
 - Closely related to polymorphism

An Example

- $g = \lambda a. \lambda f. iszero (f a)$
- $h = g \ 10$
- What is the types of a, f, g, h?

Introducing Type Variables

- $g = \lambda a: X \cdot \lambda f: Y \cdot iszero (f a)$
- $h = g \ 10$

Generating Constraints

- $g = \lambda a: X \cdot \lambda f: Y \cdot iszero (f a)$
- $h = g \ 10$
- $Y = X \rightarrow Z_0$
- $Nat = Z_0$
- $X \to Y \to Bool = Nat \to Z_1$

Unification

- $g = \lambda a: X \cdot \lambda f: Y \cdot iszero (f a)$
- $h = g \ 10$
- $Y = X \rightarrow Z_0$
- $Nat = Z_0$
- $X \to Y \to Bool = Nat \to Z_1$
- $X = Nat, Y = Nat \rightarrow Nat, Z_0 = Nat, Z_1 = (Nat \rightarrow Nat) \rightarrow Bool$

By typing rules

- $g = \lambda a: X \cdot \lambda f: Y \cdot iszero (f a)$
- $h = g \ 10$
- $Y = X \rightarrow Z_0$
- $Nat = Z_0$
- $X \to Y \to Bool = Nat \to Z_1$
- $X = Nat, Y = Nat \rightarrow Nat, Z_0 = Nat, Z_1 = (Nat \rightarrow Nat) \rightarrow Bool$
- $g: Nat \rightarrow (Nat \rightarrow Nat) \rightarrow Bool$
- $h: (Nat \rightarrow Nat) \rightarrow Bool$

Type Variables

- New Syntactic Rule
 - t ::= ... $\lambda x. t$ // untyped lambda abstraction T ::= ... X // type variables

Type Substitution

- A finite mapping from type variables to types
 - $\sigma = [X \mapsto Bool, Y \mapsto Nat \rightarrow Nat]$
 - Note the difference between \mapsto and \rightarrow
- Application of substituation σ

$$\sigma(X) = \begin{cases} T & \text{if } (X \mapsto T) \in \sigma \\ X & \text{if } X \text{ is not in the domain of } \sigma \end{cases}$$

$$\sigma(Nat) = Nat$$

$$\sigma(Bool) = Bool$$

$$\sigma(\mathsf{T}_1 \rightarrow \mathsf{T}_2) = \sigma\mathsf{T}_1 \rightarrow \sigma\mathsf{T}_2$$

Preservation of Typing under Type Substitution

$\frac{\sigma : \text{any type substitution} \quad \Gamma \vdash t: T}{\sigma \Gamma \vdash \sigma t: T}$

• Proof: By induction on typing rules

Solution

• A solution for (Γ, t) is a pair (σ, T) such that $\sigma\Gamma \vdash \sigma t$: T

EXAMPLE: Let $\Gamma = f:X$, a:Y and t = f a. Then

$$\begin{array}{ll} ([X \mapsto Y \rightarrow \mathsf{Nat}], \ \mathsf{Nat}) & ([X \mapsto Y \rightarrow \mathsf{Z}], \ \mathsf{Z}) \\ ([X \mapsto Y \rightarrow \mathsf{Z}, \ \mathsf{Z} \mapsto \mathsf{Nat}], \ \mathsf{Z}) & ([X \mapsto Y \rightarrow \mathsf{Nat} \rightarrow \mathsf{Nat}], \ \mathsf{Nat} \rightarrow \mathsf{Nat}) \\ ([X \mapsto \mathsf{Nat} \rightarrow \mathsf{Nat}, \ \mathsf{Y} \mapsto \mathsf{Nat}], \ \mathsf{Nat} \rightarrow \mathsf{Nat}) \end{array}$$

are all solutions for (Γ, t) .

• Problem: which one is better?

Principal Types

- Substitution σ is more general than σ' , written $\sigma \sqsubseteq \sigma'$ iff $\sigma' = \gamma \circ \sigma$ for some γ .
- Substitution σ is more general than σ' for term t, written $\sigma \sqsubseteq_t \sigma'$ iff $\sigma't = \gamma(\sigma t)$ for some γ .
- A most general substitution leads to a principle type EXAMPLE: Let $\Gamma = f:X$, a:Y and t = f a. Then

are all solutions for (Γ, t) .

• Which are most general substituions?

Principal Types

- Substitution σ is more general than σ' for term t, written $\sigma \sqsubseteq_t \sigma'$ iff $\sigma't = \gamma(\sigma t)$ for some γ .
- A most general substitution leads to a principle type

EXAMPLE: Let $\Gamma = f:X$, a:Y and t = fa. Then

$$([X \mapsto Y \rightarrow Nat], Nat) \qquad ([X \mapsto Y \rightarrow Z], Z)$$
$$([X \mapsto Y \rightarrow Z, Z \mapsto Nat], Z) \qquad ([X \mapsto Y \rightarrow Nat \rightarrow Nat], Nat \rightarrow Nat)$$
$$([X \mapsto Nat \rightarrow Nat, Y \mapsto Nat], Nat \rightarrow Nat)$$

are all solutions for (Γ, t) .

- Which one is a most general one?
 - 1. Replacing less variables
 - 2. Replacing with less specific types

Constraint Set

- A constraint set is a set of equations $\{S_i = T_i\}$.
- σ satisfy C={ $S_i = T_i$ } when $\sigma S_i = \sigma T_i$ for all i.

Constraint Typing Rules

- $\frac{x:T\in\Gamma}{\Gamma_{1}}$
 - $\Gamma \vdash x:T|\{\}$
- $\Gamma, x: T_1 \vdash t_2: T_2 \mid C$
- $\Gamma \vdash \lambda x: T_1 \cdot t_2: T_1 \to T_2 | C$
 - X is a fresh type variable $\Gamma, x: X \vdash t: T \mid C$
 - $\Gamma \vdash \lambda x.t: X \rightarrow T \mid C$
- $\frac{\Gamma \vdash t_1:T_1 \mid C_1 \qquad \Gamma \vdash t_2:T_2 \mid C_2}{X \text{ is a fresh type variable}}$ $\frac{X \text{ is a fresh type variable}}{\Gamma \vdash t_1 t_2:X \mid C_1 \cup C_2 \cup \{T_1 = T_2 \rightarrow X\}}$
- Γ⊢0:Nat|{}
- $\overline{\Gamma \vdash true:Bool|\{\}}$

- $\overline{\Gamma \vdash false:Bool|\{\}}$ $\frac{\Gamma \vdash t_1:T|C}{\Gamma \vdash succ \ t_1:Nat|C \cup \{T=Nat\}}$ $\Gamma \vdash t_1:T|C$
- $\Gamma \vdash pred \ t_1:Nat|C \cup \{T=Nat\}$
 - $\frac{\Gamma \vdash t_1:T|C}{\Gamma \vdash iszero \ t_1:Nat|C \cup \{T=Nat\}}$
- $\begin{array}{c} \Gamma \vdash t_1:T_1 \mid C_1 \quad \Gamma \vdash t_2:T_2 \mid C_2 \quad \Gamma \vdash t_3:T_3 \mid C_3 \\ \underline{C' = C_1 \cup C_2 \cup C_3 \cup \{T_1 = Bool, T_2 = T_3\}} \end{array}$

 $\Gamma \vdash if t_1 then t_2 else t_3:T_2|C'$

* In the book, the freshness of type variables are also treated formally in the rules

- Deduce constraints for
 - $\lambda f. \lambda n. if$ is zero n then f n else n

Soundness and Completeness

- Suppose that $\Gamma \vdash t: S \mid C$. A solution for (Γ, t, S, C) is a pair (σ, T) such that σ satisfies C and $\sigma S = T$.
- Soundness
 - If (σ, T) is a solution for (Γ, t, S, C), then it is also a solution for (Γ, t).
 - Proof: by induction on constraint typing rules
- Completeness
 - If (σ, T) is a solution for (Γ, t) , then there exists solution (σ', T) for (Γ, t, S, C) where σ and σ' are the same for any type variables in t.
 - Proof: by induction on constraint typing rules

Unification Algorithm

 $unify(C) = if C = \emptyset$, then [] else let $\{S = T\} \cup C' = C$ in if S is T then unify(C')else if S is X and X \notin FV(T) then $unify([X \mapsto T]C') \circ [X \mapsto T]$ else if T is X and X \notin *FV*(S) then $unify([X \mapsto S]C') \circ [X \mapsto S]$ else if S is $S_1 \rightarrow S_2$ and T is $T_1 \rightarrow T_2$ then $unify(C' \cup \{S_1 = T_1, S_2 = T_2\})$ else fail

Soundness

- The unification algorithm returns a most general substitution if there is one, or fails otherwise.
 - Proof: Induction on the number of recursive calls

Termination

- Every iteration either
 - drop a constraint from C, or
 - divide a constraint into smaller constraints

Type Reconstruction with Subtyping

- Constraints containing both <: and =
- Every type variable starts with TOP
- Shrink types to satisfy constraints
 - X:Nat, Y:TOP \Longrightarrow X:Nat, Y:Nat
 - X:Nat, Y:TOP $\xrightarrow{X < :Y}$ X:Nat, Y:TOP
 - X:Nat, Y:TOP \Longrightarrow X:Nat, Y:Nat
- Until a fixed point is reached
- Termination
 - Types for the variables are always shrink
 - Lower bound exist

Polymorphism


```
    let double=λf. λa. f (f a) in
        {
            double (λx:Nat. succ (succ x)) 1,
            double (λx:Bool x) false
            }
```

• Will this program be type checked?

 $\frac{\Gamma \vdash \mathtt{t}_1 : \mathtt{T}_1 \qquad \Gamma, \mathtt{x} : \mathtt{T}_1 \vdash \mathtt{t}_2 : \mathtt{T}_2}{\Gamma \vdash \mathtt{let} \, \mathtt{x} = \mathtt{t}_1 \, \mathtt{in} \, \mathtt{t}_2 : \mathtt{T}_2}$

Three types of polymorphisms

- Polymorphism
 - A single interface to different types
- Adhoc Polymorphism
 - e.g., case...of..., function overloading double f:Nat->Nat a:Nat = f (f a) double f:Bool->Bool a:Bool = f (f a)
- Subtyping
 - interface function {
 Object apply(Object);
 Object doubleApply(Object);
 }
- Parametric Polymorphism
 - e.g., C++ template

Hindley-Milner Type System

- A simple polymorphism type system deals with the previous case
- Widely-used in some mainstream functional programming languages
 - Ocaml, ML, Haskell98.
- Weaker than System-F to be introduced in the next course
 - Type reconstruction is undecidable for System-F.

Typing Rules in HM-System

$\frac{\Gamma \vdash [\mathbf{x} \mapsto \mathbf{t}_1]\mathbf{t}_2 : \mathbf{T}_2 \mid_{\mathcal{X}} C}{\Gamma \vdash \mathsf{let} \, \mathbf{x} = \mathbf{t}_1 \, \mathsf{in} \, \mathbf{t}_2 : \mathbf{T}_2 \mid_{\mathcal{X}} C}$

- What is the type of this program?
- let $f = \lambda x.x$ in let $g = \lambda x.f$ (f x) in {g 5, g true}

• What is the type of this program?

(λf. let g = λx.f (f x) in {g 5, g true}) (λx.x)

• What is the type of this program?

```
    let h= λx.x in
        (λf.
        let g = λx.f (f x) in
        {g 5, g true}
        ) h
```


Inefficiency of the typing rules


```
    let double=λf. λa. f (f a) in
        {
            double (λx:Nat. succ (succ x)) 1,
            double (λx:Bool x) false
            }
```

• The red part is type checked twice


```
    let double=λf. λa. f (f a) in
        {
            double (λx:Nat. succ (succ x)) 1,
            double (λx:Bool x) false
            }
```

- 1. Type check only the "let" part (red) and get its principle type
 - $(X \rightarrow X) \rightarrow X \rightarrow X$


```
    let double=λf. λa. f (f a) in
        {
            double (λx:Nat. succ (succ x)) 1,
            double (λx:Bool x) false
            }
```

- 1. Type check only the "let" part and get its principle type
 - $(X \rightarrow X) \rightarrow X \rightarrow X$
- 2. Introduce quantification for type variables not used in Γ
 - double: $\forall X.(X \rightarrow X) \rightarrow X \rightarrow X$

- let double=λf. λa. f (f a) in
 {
 double (λx:Nat. succ (succ x)) 1,
 double (λx:Bool x) false
 }
- 1. Type check only the "let" part and get its principle type • $(X \rightarrow X) \rightarrow X \rightarrow X$
- 2. Introduce quantification for type variables not used in Γ
 - double: $\forall X.(X \rightarrow X) \rightarrow X \rightarrow X$
- 3. Add it to Γ and type check the body, using an additional typing rule

 $t: \forall X_1 \dots X_n. T \in \Gamma \ Y_1 \dots Y_n$ are fresh variables

$$\Gamma \vdash t \colon [X_1 \mapsto Y_1] \dots [X_n \mapsto Y_n]T$$

- The informal description does not work with the formal system in the text book
 - Need to reformulate all rules to make it formal
- For full formal description, see Wikipedia page of "Hindley-Milner type system"

Ref variables

- What is the type of the following program?
 - let r=ref (λx.x) in (r:=(λx:Nat, succ x); (!r)true);

Ref variables

- What is the type of the following program?
 - let r=ref (λx.x) in (r:=(λx:Nat, succ x); (!r)true);
- HM-system does not work with ref variables
- Disallow polymorphism when the let definition is of reference type

Homework

- Change the constraint typing rule and the unification algorithm so that the following term can be typed
 - fix (λh. λx:Nat. h)

