
Design Principles of Programming Languages

Universal Types

Zhenjiang Hu, Haiyan Zhao, Yingfei Xiong

Peking University, Spring Term, 2014

Project Deadlines

• Report and code submission: May 27th

• Final presentation: May 28th, Jun 4th

• Presentation: 30 mins

• Discussion: 10 mins

• Do introduce your individual responsibility

2

Presentation Schedule

• May 28th

• 网络协议编程语言
• 徐泽骅、刘晨昊、包新启

• 没有停机问题的编程语言
• 杨嘉骐李屹王译梧

• 嵌入时间复杂度表示的类型系统
• 林舒刘智猷苏暐恩

• 无死锁、无隐私泄露的pi演算
• 杨纬坤 侯嘉琦汪成龙

• Jun 4th

• 可执行伪码
• 郭嘉琦窦笑添王晓阳

• Race-Free Imperative Language
• 王诗君赵玮泽齐荣嵘米亚晴

• 浮点数精度判定类型系统
• 吴逸鸣邹达明胡天翔郑淇木

3

Key to homework

• Change the constraint typing rule and the unification
algorithm so that the following term can be typed
• fix (𝜆h. 𝜆x:Nat. h)

• Generate constraints for “fix”

•
Γ⊢t:T∣C 𝑋 is a fresh variable

Γ⊢fix t:X∣C∪{T=X→X}

• Unification Algorithm: adding two rules
else if S is X and X∈FV(T)

then unify([X↦ 𝜇X.T]C’)∘[X↦ 𝜇X.T]

else if T is X and X∈FV(S)

then unify([X↦ 𝜇X.S]C’)∘[X↦ 𝜇X.S]

4

Not a general
algorithm but

works for hungry

System F

• The foundation for polymorphism in modern languages
• C++, Java, C#, Modern Haskell

• Discovered by
• Jean-Yves Girard (1972)

• John Reynolds (1974)

• Also known as
• Polymorphic 𝜆-calculus

• Second-order 𝜆-calculus
• (Curry-Howard) Corresponds to second-order intuitionistic logic

• Impredicative polymorphism (for the polymorphism
mechanism)

5

Review

• What is the limitation of Hindley-Milner system?

6

System F by Examples

7

Exercise

• What are the types of the following terms?
• double=𝜆X. 𝜆f:X→X. 𝜆a:X.f (f a)

• double [Nat]

• double [Nat→Nat]

8

Key to Exercise

• What are the types of the following terms?
• double=𝜆X. 𝜆f:X→X. 𝜆a:X.f (f a)

• ∀X. (X→X) → X →X

• double [Nat]
• (Nat→ Nat) →Nat→ Nat

• double [Nat→Nat]
• ((Nat→ Nat) → Nat→ Nat) → (Nat→ Nat) → Nat→ Nat

9

10

Exercise

• Can we type this term in simple typed 𝜆-calculus?
• 𝜆𝑥. 𝑥 𝑥

11

Exercise

• Can we type this term in system F?
• 𝜆𝑥. 𝑥 𝑥

12

Exercise

• Can we type this term in system F?
• 𝜆𝑥. 𝑥 𝑥

• 𝜆𝑥: ∀𝑋. 𝑋 → 𝑋. x [∀𝑋. 𝑋 → 𝑋] x

• quadruple = 𝜆X. double [X→X] (double [X])

13

Exercise

• Implment csucc for CNat so that 𝑐𝑖 = csucc 𝑐𝑖−1

14

Exercise

• Implment csucc for CNat so that 𝑐𝑖 = csucc 𝑐𝑖−1

15

Exercise

• Implment csucc for CNat so that 𝑐𝑖 = csucc 𝑐𝑖−1

16

Extending System F

• Introducing advanced types by directly copying the
extra rules
• Tuples, Records, Variants, References, Recursive types

• PolyPair = ∀X. ∀Y. {X, Y}

17

Can you define list in System
F?
• List =…

• nil = …

• cons = …

18

Can you define list in System
F?
• List = ∀X. 𝜇A. <nil:Unit, cons:{X, A}>;

• nil = 𝜆X. <nil:Unit> as 𝜇A. <nil:Unit, cons:{X, A}>

• cons = 𝜆X. 𝜆n:X.𝜆l:List.<cons={n, l [X]}> as 𝜇A.
<nil:Unit, cons:{X, A}>

• What is the problem of the above list?

19

Can you define list in System
F?
• List = ∀X. 𝜇A. <nil:Unit, cons:{X, A}>;

• nil = 𝜆X. <nil:Unit> as 𝜇A. <nil:Unit, cons:{X, A}>

• cons = 𝜆X. 𝜆n:X.𝜆l:List.<cons={n, l [X]}> as 𝜇A.
<nil:Unit, cons:{X, A}>

• What is the problem of the above list?
• cons 1 (cons 2 nil) is not well typed

• Full polymorphism list requires System F𝜔

20

A pseudo solution

• List X = 𝜇A. <nil:Unit, cons:{X, A}>

• nil = 𝜆X.<nil:Unit> as List X

• cons = 𝜆X.𝜆n:X.𝜆l:List X.<cons={n, l [X]}> as List X

21

Church Encoding

• Read the book

22

Basic Properties

• Preservation

• Progress

• Normalization
• Every typable term halts.

• Y Combinator cannot be written in System F.

23

Efficiency Issue

• Additional evaluation rule adds runtime overhead.

• Solution:
• Only use types in type checking

• Erase types during compilation

24

Removing types

25

t reduces to t’ ⇒ erase(t) reduces to erase(t’)

A Problem in Extended
System F
• Do the following two terms the same?

• let f=(𝜆X.error) in 0;

• let f=error in 0;

26

A Problem in Extended
System F
• Do the following two terms the same?

• let f=(𝜆X.error) in 0;

• let f=error in 0;

• A new erase function

27

Wells’ Theorem

• Can we construct types in System F?
• One of the longest-standing problems in programming

languages

• 1970s – 1990s

• [Wells94] It is undecidable whether, given a closed
term 𝑚 of the untyped 𝜆-calculus, there is some
well-typed term 𝑡 in System F such that 𝑒𝑟𝑎𝑠𝑒 𝑡 =
𝑚.

28

Rank-N Polymorphism

• In AST, any path from the root to an ∀ passes the
left of no more than N-1 arrows
• ∀𝑋. 𝑋 → 𝑋: Rank 1
• ∀𝑋. 𝑋 → 𝑋 → 𝑁𝑎𝑡: Rank 2
• (∀𝑋. 𝑋 → 𝑋 → 𝑁𝑎𝑡) → 𝑁𝑎𝑡: Rank 3
• 𝑁𝑎𝑡 →(∀𝑋.𝑋→𝑋)→𝑁𝑎𝑡→𝑁𝑎𝑡: Rank 2
• 𝑁𝑎𝑡 →(∀𝑋.𝑋→𝑋)→𝑁𝑎𝑡: Rank 2

• Rank-1 is HM-system

• Type inference for rank-2 is decidable

• Type inference for rank-3 or more is undecidable

29

Term Impredicative

• A term in logic

• A quantifier whose domain includes the very thing
being defined

30

