

Design Principles of Programming Languages

Universal Types

Zhenjiang Hu, Haiyan Zhao, <u>Yingfei Xiong</u> Peking University, Spring Term, 2014

Project Deadlines

- Report and code submission: May 27th
- Final presentation: May 28th, Jun 4th
 - Presentation: 30 mins
 - Discussion: 10 mins
 - Do introduce your individual responsibility

Presentation Schedule

- May 28th
 - 网络协议编程语言
 - 徐泽骅、刘晨昊、包新启
 - 没有停机问题的编程语言
 - 杨嘉骐李屹王译梧
 - 嵌入时间复杂度表示的类型系统
 - 林舒 刘智猷 苏暐恩
 - 无死锁、无隐私泄露的pi演算
 - 杨纬坤 侯嘉琦 汪成龙
- Jun 4th
 - 可执行伪码
 - 郭嘉琦 窦笑添 王晓阳
 - Race-Free Imperative Language
 - 王诗君赵玮泽齐荣嵘米亚晴
 - 浮点数精度判定类型系统
 - 吴逸鸣 邹达明 胡天翔 郑淇木

Key to homework

- Change the constraint typing rule and the unification algorithm so that the following term can be typed
 - fix (λ h. λ x:Nat. h)
- Generate constraints for "fix"
 - $\Gamma \vdash t:T|C$ X is a fresh variable

 $\Gamma \vdash \text{fix t:} X | C \cup \{T = X \rightarrow X\}$

- Unification Algorithm: adding two rules
 - else if S is X and X \in FV(T) then unify([X $\mapsto \mu X.T$]C') \circ [X $\mapsto \mu X.T$] else if T is X and X \in FV(S) then unify([X $\mapsto \mu X.S$]C') \circ [X $\mapsto \mu X.S$]

Not a general algorithm but works for hungry

System F

- The foundation for polymorphism in modern languages
 - C++, Java, C#, Modern Haskell
- Discovered by
 - Jean-Yves Girard (1972)
 - John Reynolds (1974)
- Also known as
 - Polymorphic λ -calculus
 - Second-order λ -calculus
 - (Curry-Howard) Corresponds to second-order intuitionistic logic
 - Impredicative polymorphism (for the polymorphism mechanism)

Review

• What is the limitation of Hindley-Milner system?

System F by Examples

- id = $\lambda X. \lambda x: X. x;$
- id : $\forall X. X \rightarrow X$
 - id [Nat];
- <fun> : Nat \rightarrow Nat
 - id [Nat] 0;
- ▶ 0 : Nat

- What are the types of the following terms?
 - double= λX . $\lambda f: X \rightarrow X$. $\lambda a: X.f$ (f a)
 - double [Nat]
 - double [Nat→Nat]

Key to Exercise

- What are the types of the following terms?
 - double= λX . $\lambda f: X \rightarrow X$. $\lambda a: X.f$ (f a)
 - $\forall X. (X \rightarrow X) \rightarrow X \rightarrow X$
 - double [Nat]
 - (Nat \rightarrow Nat) \rightarrow Nat \rightarrow Nat
 - double [Nat→Nat]
 - $((Nat \rightarrow Nat) \rightarrow Nat \rightarrow Nat) \rightarrow (Nat \rightarrow Nat) \rightarrow Nat \rightarrow Nat$

Syntax			Evaluation	$t \rightarrow t'$
t ::=	x λx:T.t	terms: variable abstraction	$\frac{\mathtt{t}_1 \longrightarrow \mathtt{t}_1'}{\mathtt{t}_1 \mathtt{t}_2 \longrightarrow \mathtt{t}_1' \mathtt{t}_2}$	(E-App1)
	tt λX.t t[T]	application type abstraction type application	$\frac{\mathbf{t}_2 \longrightarrow \mathbf{t}_2'}{\mathbf{v}_1 \ \mathbf{t}_2 \longrightarrow \mathbf{v}_1 \ \mathbf{t}_2'}$	(E-App2)
			$(\lambda \mathbf{x}: T_{11}, t_{12}) v_2 \rightarrow [x \mapsto v_2] t_{12}$	E-APPABS)
v ::=	$\lambda x:T.t$ $\lambda X.t$	values: abstraction value type abstraction value	$\frac{\mathtt{t}_1 \longrightarrow \mathtt{t}_1'}{\mathtt{t}_1 \ [\mathtt{T}_2] \longrightarrow \mathtt{t}_1' \ [\mathtt{T}_2]}$	(Е-ТАрр)
			$(\lambda X.t_{12})$ $[T_2] \rightarrow [X \mapsto T_2]t_{12}$ (E-	(APPTABS)
T ::=	Y	types:	Temina	
	X	type variable		Γ⊢t:T
	T→T ∀X.T	type of functions universal type	$\frac{\mathbf{x}:T\in\Gamma}{\Gamma\vdash\mathbf{x}:T}$	(T-VAR)
Г ::=	Ø	contexts: empty context	$\frac{\Gamma, \mathbf{x}: T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda \mathbf{x}: T_1 \cdot t_2 : T_1 \rightarrow T_2}$	(T-Abs)
	Г, х:Т Г, Х	term variable binding type variable binding	$\frac{\Gamma \vdash \mathbf{t}_1 : T_{11} \rightarrow T_{12} \qquad \Gamma \vdash \mathbf{t}_2 : T_{11}}{\Gamma \vdash \mathbf{t}_1 \ \mathbf{t}_2 : T_{12}}$	(T-App)
			$\frac{\Gamma, X \vdash t_2 : T_2}{\Gamma \vdash \lambda X. t_2 : \forall X. T_2}$	(T-TABS)
			$\frac{\Gamma \vdash \mathbf{t}_1 : \forall \mathbf{X}.\mathbf{T}_{12}}{\Gamma \vdash \mathbf{t}_1 \ [\mathbf{T}_2] : [\mathbf{X} \mapsto \mathbf{T}_2]\mathbf{T}_{12}}$	(Т-ТАрр)

- Can we type this term in simple typed λ -calculus?
 - $\lambda x \cdot x x$

- Can we type this term in system F?
 - $\lambda x \cdot x x$

- Can we type this term in system F?
 - $\lambda x \cdot x x$
- $\lambda x: \forall X. X \to X. \quad x [\forall X. X \to X] x$
- quadruple = λX . double [X \rightarrow X] (double [X])

• Implment csucc for CNat so that c_i = csucc c_{i-1}

CNat = $\forall X. (X \rightarrow X) \rightarrow X \rightarrow X;$

 $c_0 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. z;$

- \blacktriangleright c₀ : CNat
 - $c_1 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. s z;$
- ▶ c₁ : CNat

 $c_2 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. s (s z);$

► c₂ : CNat

• Implment csucc for CNat so that c_i = csucc c_{i-1}

CNat = $\forall X. (X \rightarrow X) \rightarrow X \rightarrow X;$ $c_0 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. z;$

- \blacktriangleright c_0 : CNat
 - $c_1 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. s z;$
- c_1 : CNat

 $c_2 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. s (s z);$

► c₂ : CNat

scc =
$$\lambda n. \lambda s. \lambda z. s (n s z);$$

• Implment csucc for CNat so that $c_i = \text{csucc } c_{i-1}$

CNat = $\forall X. (X \rightarrow X) \rightarrow X \rightarrow X;$ c₀ = $\lambda X. \lambda s: X \rightarrow X. \lambda z: X. z;$

- ► c₀ : CNat
 - $c_1 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. s z;$
- c_1 : CNat

 $c_2 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. s (s z);$

 \blacktriangleright c₂ : CNat

csucc = λ n:CNat. λ X. λ s:X \rightarrow X. λ z:X. s (n [X] s z);

• csucc : CNat \rightarrow CNat

Extending System F

- Introducing advanced types by directly copying the extra rules
 - Tuples, Records, Variants, References, Recursive types
- PolyPair = $\forall X. \forall Y. \{X, Y\}$

• List =...

F?

- nil = ...
- cons = ...

Can you define list in System F?

- List = $\forall X. \mu A. <$ nil:Unit, cons:{X, A}>;
- nil = λX . <nil:Unit> as μA . <nil:Unit, cons:{X, A}>
- cons = λX . λn :X. λl :List.<cons={n, | [X]}> as μA . <nil:Unit, cons:{X, A}>
- What is the problem of the above list?

Can you define list in System F?

- List = $\forall X. \mu A. <$ nil:Unit, cons:{X, A}>;
- nil = λX . <nil:Unit> as μA . <nil:Unit, cons:{X, A}>
- cons = λX . $\lambda n: X \cdot \lambda l: List. < cons = {n, | [X]} > as <math>\mu A$. <nil:Unit, cons:{X, A}>
- What is the problem of the above list?
 - cons 1 (cons 2 nil) is not well typed
- Full polymorphism list requires System F ω

A pseudo solution

- List X = μA. <nil:Unit, cons:{X, A}>
- nil = λX .<nil:Unit> as List X
- cons = $\lambda X.\lambda n: X.\lambda I: List X. < cons = {n, | [X]} > as List X$

Church Encoding

• Read the book

Basic Properties

- Preservation
- Progress
- Normalization
 - Every typable term halts.
 - Y Combinator cannot be written in System F.

Efficiency Issue

Additional evaluation rule adds runtime overhead.

 $(\lambda X.t_{12})$ $[T_2] \rightarrow [X \mapsto T_2]t_{12}$ (E-TAPPTABS)

- Solution:
 - Only use types in type checking
 - Erase types during compilation

Removing types

 $erase(\mathbf{x}) = \mathbf{x}$ $erase(\lambda \mathbf{x}:\mathsf{T}_1. \mathsf{t}_2) = \lambda \mathbf{x}. erase(\mathsf{t}_2)$ $erase(\mathsf{t}_1 \mathsf{t}_2) = erase(\mathsf{t}_1) erase(\mathsf{t}_2)$ $erase(\lambda \mathsf{X}. \mathsf{t}_2) = erase(\mathsf{t}_2)$ $erase(\mathsf{t}_1 [\mathsf{T}_2]) = erase(\mathsf{t}_1)$

t reduces to t' \Rightarrow erase(t) reduces to erase(t')

A Problem in Extended System F

- Do the following two terms the same?
 - let f=(λ X.error) in 0;
 - let f=error in 0;

A Problem in Extended System F

- Do the following two terms the same?
 - let f=(λ X.error) in 0;
 - let f=error in 0;
- A new erase function

$$erase_{V}(\mathbf{x}) = \mathbf{x}$$

$$erase_{V}(\lambda \mathbf{x}:\mathsf{T}_{1}.\mathsf{t}_{2}) = \lambda$$

$$erase_{V}(\mathsf{t}_{1}\mathsf{t}_{2}) = e_{V}$$

$$erase_{V}(\lambda \mathsf{X}.\mathsf{t}_{2}) = \lambda$$

$$erase_{V}(\mathsf{t}_{1}[\mathsf{T}_{2}]) = e_{V}$$

- $\lambda x. erase_{v}(t_{2})$
- $erase_{v}(t_{1}) erase_{v}(t_{2})$
- = λ_{-} . erase_v(t₂)
 - $= erase_{v}(t_{1}) \operatorname{dummyv}$

Wells' Theorem

- Can we construct types in System F?
 - One of the longest-standing problems in programming languages
 - 1970s 1990s
- [Wells94] It is undecidable whether, given a closed term m of the untyped λ-calculus, there is some well-typed term t in System F such that erase(t) = m.

Rank-N Polymorphism

- In AST, any path from the root to an ∀ passes the left of no more than N-1 arrows
 - $\forall X. X \rightarrow X$: Rank 1
 - $(\forall X. X \rightarrow X) \rightarrow Nat$: Rank 2
 - $((\forall X.X \rightarrow X) \rightarrow Nat) \rightarrow Nat$: Rank 3
 - $Nat \rightarrow (\forall X.X \rightarrow X) \rightarrow Nat \rightarrow Nat$: Rank 2
 - $Nat \rightarrow (\forall X.X \rightarrow X) \rightarrow Nat$: Rank 2
- Rank-1 is HM-system
- Type inference for rank-2 is decidable
- Type inference for rank-3 or more is undecidable

Term Impredicative

- A term in logic
- A quantifier whose domain includes the very thing being defined

