
编程语言的设计原理
Design Principles of Programming Languages

Zhenjiang Hu, Yingfei Xiong, Haiyan Zhao,
胡振江 熊英飞 赵海燕

Peking University, Spring, 2014

1

Chapter 0+: Implementation

A quick tour of OCaml
Utilities in Ocaml system

An Implementation for Arithmetic Expression

A Quick Tour of OCaml

Resources

• Overview
– http://ocaml.org/learn/tutorials/basics.html

• Tutorials
– http://ocaml.org/learn/tutorials/

• Download
– http://caml.inria.fr/download.en.html

http://ocaml.org/learn/tutorials/

 Why Ocaml?
The material in this course is mostly conceptual and
mathematical. However:

– Some of the ideas are easier to grasp if you can “see
them work”

– Experimenting with small implementations of
programming languages is an excellent way to
deepen intuitions

OCaml language is chosen for these purposes

OCaml
• A large and powerful language (safety and reliability)

– the most popular variant of the Caml language
• Categorical Abstract Machine Language(分类抽象机语言)
• Collaborative Application Markup Language(协作应用程序标记语言)

– extending the core Caml language with
• a fully-fledged object-oriented layer
• powerful module system
• a sound, polymorphic type system featuring type inference.

– a functional programming language
• i.e., a language in which the functional programming style

is the dominant idiom

• OCaml system is open source software

http://caml.inria.fr/about/index.en.html

Functional Programming
• Functional style can be described as a combination of...

– persistent data structures (which, once built, are never
changed)

– recursion as a primary control structure
– heavy use of higher-order functions (that take functions as

arguments and/or return functions as results)

• Imperative languages, by contrast, emphasize...
– mutable data structures
– looping rather than recursion
– first-order rather than higher-order programming (though

many object-oriented design patterns involve higher-order
idioms—e.g., Subscribe/Notify, Visitor, etc.)

OCaml used in the Course
• Concentrates just on the “core” of the language,

ignoring most of its features, like modules or
objects. For
– some of the ideas in the course are easier to grasp if

you can “see them work”
– experimenting with small implementations of

programming languages is an excellent way to
deepen intuitions

The Top Level
• OCaml provides both an interactive top level and a compiler

that produces standard executable binaries.
– The top level provides a convenient way of experimenting with

small programs.

• The mode of interacting with the top level is typing in a series
of expressions; OCaml evaluates them as they are typed and
displays the results (and their types). In the interaction ,
– lines beginning with # are inputs
– lines beginning with - are the system’s responses.

– Note that inputs are always terminated by a double semicolon ;;

Expressions
OCaml is an expression language. A program is an
expression. The “meaning” of the program is the value of
the expression.

16 + 18;;
- : int = 34

2*8 + 3*6;;
- : int = 34

Giving things names
The let construct gives a name to the result of an
expression so that it can be used later.

let inchesPerMile = 12*3*1760;;
val inchesPerMile : int = 63360

let x = 1000000 / inchesPerMile;;
val x : int = 15

Functions
let cube (x:int) = x*x*x;;
val cube : int -> int = <fun>
cube 9;;
- : int = 729

• We call x the parameter of the function cube; the expression

x*x*x is its body. The expression cube 9 is an application of cube
to the argument 9.

• The type printed by OCaml, int->int (pronounced “int arrow int”)
indicates that cube is a function that should be applied to an
integer argument and that returns an integer.

• Note that OCaml responds to a function declaration by printing
just <fun> as the function’s “value.

Functions
A function with two parameters:

The type printed for sumsq is int->int->int, indicating that it should
be applied to two integer arguments and yields an integer as its result.
Note that the syntax for invoking function declarations in OCaml is
slightly different from languages in the C/C++/Java family:
use cube 3 and sumsq 3 4 rather than cube(3) and sumsq(3,4).

let sumsq (x:int) (y:int) = x*x + y*y;;
val sumsq : int -> int -> int = <fun>

sumsq 3 4;;
- : int = 25

Type boolean
There are only two values of type boolean: true and false.
Comparison operations return boolean values.

1 = 2;;
- : bool = false

4 >= 3;;
- : bool = true

not is a unary operation on booleans

not (5 <= 10);;
- : bool = false
not (2 = 2);;
- : bool = false

Conditional expressions
The result of the conditional expression if B then E1 else E2 is either
the result of E1 or that of E2, depending on whether the result of B
is true or false.

if 3 < 4 then 7 else 100;;
- : int = 7
if 3 < 4 then (3 + 3) else (10 * 10);;
- : int = 6
if false then (3 + 3) else (10 * 10);;
- : int = 100
if false then false else true;;
- : bool = true

Recursive functions
We can translate inductive definitions directly into recursive
functions.

let rec sum(n:int) = if n = 0 then 0 else n + sum(n-1);;
val sum : int -> int = <fun>
sum(6);;
- : int = 21

let rec fact(n:int) = if n = 0 then 1 else n * fact(n-1);;
val fact : int -> int = <fun>
fact(6);;
- : int = 720

The rec after the let tells OCaml this is a recursive function —
one that needs to refer to itself in its own body.

Recursive functions: Making change
Another example of recursion on integer arguments: Suppose you
are a bank and therefore have an “infinite” supply of coins (pennies,
nickles, dimes, and quarters, and silver dollars), and you have to
give a customer a certain sum. How many ways are there of doing
this?

For example, there are 4 ways of making change for 12 cents:

– 12 pennies
– 1 nickle and 7 pennies
– 2 nickles and 2 pennies
– 1 dime and 2 pennies

We want to write a function change that, when applied to 12,
returns 4.

Recursive functions: Making change

To get started, let’s consider a simplified variant of the
problem where the bank only has one kind of coin:
pennies.
In this case, there is only one way to make change for
a given amount: pay the whole sum in pennies!

(* No. of ways of paying a in pennies *)
let rec changeP (a:int) = 1;;

That wasn’t very hard.

Recursive functions: Making change
Now suppose the bank has both nickels and pennies.
If a is less than 5 then we can only pay with pennies. If
not, we can do one of two things:

– Pay in pennies; we already know how to do this.
– Pay with at least one nickel. The number of ways of

doing this is the number of ways of making change
(with nickels and pennies) for a-5.

(* No. of ways of paying in pennies and nickels *)
let rec changePN (a:int) =
 if a < 5 then changeP a
 else changeP a + changePN (a-5);

Recursive functions: Making change
Continuing the idea for dimes and quarters:

(* ... pennies, nickels, dimes *)
let rec changePND (a:int) =
 if a < 10 then changePN a
 else changePN a + changePND (a-10);;

(* ... pennies, nickels, dimes, quarters *)
let rec changePNDQ (a:int) =
 if a < 25 then changePND a
 else changePND a + changePNDQ (a-25);;

Recursive functions: Making change

(* Pennies, nickels, dimes, quarters, dollars *)
let rec change (a:int) =
 if a < 100 then changePNDQ a
 else changePNDQ a + change (a-100);;

Recursive functions: Making change
Some tests:
change 5;;
- : int = 2
change 9;;
- : int = 2
change 10;;
- : int = 4
change 29;;
- : int = 13
change 30;;
- : int = 18
change 100;;
- : int = 243
change 499;;
- : int = 33995

Lists
• One handy structure for storing a collection of data values is a

list.
– provided as a built-in type in OCaml and a number of other popular

languages (e.g., Lisp, Scheme, and Prolog—but not, unfortunately,
Java).

– built in OCaml by writing out its elements, enclosed in square
brackets and separated by semicolons.

[1; 3; 2; 5];;
- : int list = [1; 3; 2; 5]

• The type that OCaml prints for this list is pronounced either
“integer list” or “list of integers”.

• The empty list, written [], is sometimes called “nil.”

Lists are homogeneous

• OCaml does not allow different types of elements to
be mixed within the same list:

[1; 2; "dog"];;
Characters 7-13:

• This expression has type string list but is here used

with type int list

Constructing Lists
OCaml provides a number of built-in operations that return lists.
The most basic one creates a new list by adding an element to the
front of an existing list.

– written :: and pronounced “cons” (for it constructs lists).

 # 1 :: [2; 3];;
- : int list = [1; 2; 3]

let add123 (l: int list) = 1 :: 2 :: 3 :: l;;
val add123 : int list -> int list = <fun>

add123 [5; 6; 7];;
- : int list = [1; 2; 3; 5; 6; 7]

add123 [];;
- : int list = [1; 2; 3]

Constructing Lists
• Any list can be built by “consing” its elements together:

 In fact, [x1; x2; . . . ; xn] is simply a shorthand for
 x1 :: x2 :: . . . :: xn :: []
• Note that, when omitting parentheses from an

expression involving several uses of ::, we associate to
the right
– i.e., 1::2::3::[] means the same thing as 1::(2::(3::[]))
– By contrast, arithmetic operators like + and - associate to the

left: 1-2-3-4 means ((1-2)-3)-4.

1 :: 2 :: 3 :: 2 :: 1 :: [] ;;;
 : int list = [1; 2; 3; 2; 1]

Taking Lists Apart

• OCaml provides two basic operations for
extracting the parts of a list.

List.hd (pronounced “head”) returns the first
element of a list.

List.hd [1; 2; 3];;
- : int = 1

 List.tl (pronounced “tail”) returns everything but the
first element.

List.tl [1; 2; 3];;
- : int list = [2; 3]

More list examples

List.tl (List.tl [1; 2; 3]);;
- : int list = [3]

List.tl (List.tl (List.tl [1; 2; 3]));;
- : int list = []

List.hd (List.tl (List.tl [1; 2; 3]));;
- : int = 3

Recursion on lists

• Lots of useful functions on lists can be written using
recursion.
– Here’s one that sums the elements of a list of numbers:

let rec listSum (l:int list) =

if l = [] then 0
else List.hd l + listSum (List.tl l);;

listSum [5; 4; 3; 2; 1];;
- : int = 15

Consing on the right
let rec snoc (l: int list) (x: int) =

if l = [] then x::[]
else List.hd l :: snoc(List.tl l) x;;

val snoc : int list -> int -> int list = <fun>

snoc [5; 4; 3; 2] 1;;
- : int list = [5; 4; 3; 2; 1]

A better rev
(* Adds the elements of l to res in reverse order *)
let rec revaux (l: int list) (res: int list) =

if l = [] then res
else revaux (List.tl l) (List.hd l :: res);;

val revaux : int list -> int list -> int list = <fun>

revaux [1; 2; 3] [4; 5; 6];;
- : int list = [3; 2; 1; 4; 5; 6]

let rev (l: int list) = revaux l [];;
val rev : int list -> int list = <fun>

Tail recursion
• It is usually fairly easy to rewrite a recursive function in tail-recursive style.

– E.g., the usual factorial function is not tail recursive (because one multiplication
remains to be done after the recursive call returns):

let rec fact (n:int) =

if n = 0 then 1
else n * fact(n-1);;

• It can be transformed into a tail-recursive version by performing the

multiplication before the recursive call and passing along a separate argument
in which these multiplications “accumulate”:

let rec factaux (acc:int) (n:int) =

if n = 0 then acc
else factaux (acc*n) (n-1);;

let fact (n:int) = factaux 1 n;;

Basic Pattern Matching

Recursive functions on lists tend to have a standard shape:
– test whether the list is empty, and if it is not
– do something involving the head element and the tail.

 # let rec listSum (l:int list) =
 if l = [] then 0
 else List.hd l + listSum (List.tl l);;

OCaml provides a convenient pattern-matching construct that
bundles the emptiness test and the extraction of the head and tail
into a single syntactic form:

let rec listSum (l: int list) =
match l with
 [] -> 0
| x::y -> x + listSum y;;

Basic Pattern Matching

• Pattern matching can be used with types other than
lists. For example, here it is used on integers:

let rec fact (n:int) =
 match n with
 0 -> 1
 | _ -> n * fact(n-1);;

here _ pattern is a wildcard that matches any value

Complex Patterns
• The basic elements (constants, variable binders,

wildcards, [], ::, etc.) may be combined in arbitrarily
complex ways in match expressions:
let silly l =
 match l with
 [_;_;_] -> "three elements long"
 | _::x::y::_::_::rest ->
 if x>y then "foo" else "bar"
 | _ -> "dunno";;
val silly : int list -> string = <fun>
silly [1;2;3];;
- : string = "three elements long"
silly [1;2;3;4];;
- : string = "dunno"
silly [1;2;3;4;5];;
- : string = "bar"

Type Inference
• One pleasant feature of OCaml is a powerful type

inference mechanism that allows the compiler to
calculate the types of variables from the way in which
they are used.

• The compiler can tell that fact takes an integer argument
because n is used as an argument to the integer * and - functions.

let rec fact n =
 match n with
 0 -> 1
 | _ -> n * fact(n-1);;
val fact : int -> int = <fun>

Type Inference
Similarly:

let rec listSum l =
 match l with
 [] -> 0
 | x::y -> x + listSum y;;
val listSum : int list -> int = <fun>

Polymorphism (first taste)

• The ’a in the type of length, pronounced “alpha,” is a
type variable standing for an arbitrary type.

• The inferred type tells us that the function can take a
list with elements of any type (i.e., a list with elements
of type alpha, for any choice of alpha).

let rec length l =
 match l with
 [] -> 0
 | _::y -> 1 + length y;;
val length : ’a list -> int = <fun>

Tuples
• Items connected by commas are “tuples.” (The

enclosing parenthesis are optional.)

"age", 44;;
- : string * int = "age", 44

"professor","age", 33;;
- : string * string * int = "professor", "age", 33

("children", ["bob";"ted";"alice"]);;
- : string * string list = "children", ["bob"; "ted"; "alice"]

let g (x,y) = x*y;;
val g : int * int -> int = <fun>

演示者
演示文稿备注
How many arguments does g take?

Tuples are not lists
Do not confuse them!

let tuple = "cow", "dog", "sheep";;
val tuple : string * string * string = "cow", "dog", "sheep"

List.hd tuple;;
Error: This expression has type string * string * string
 but an expression was expected of type 'a list

let tup2 = 1, "cow";;
val tup2 : int * string = 1, "cow"

let l2 = [1; "cow"];;
Error: This expression has type string but an expression was
expected of type int

Tuples and pattern matching
• Tuples can be “deconstructed” by pattern matching:

let lastName name =
 match name with
 (n,_,_) -> n;;

lastName (“Zhao", “Haiyan", “PKU");;
- : string = “Zhao"

Example: Finding words **
• Suppose we want to take a list of characters and return

a list of lists of characters, where each element of the
final list is a “word” from the original list.

split [’t’;’h’;’e’;’ ’;’b’;’r’;’o’;’w’;’n’; ’ ’;’d’;’o’;’g’];;
- : char list list = [[’t’; ’h’; ’e’]; [’b’; ’r’; ’o’; ’w’; ’n’];
 [’d’; ’o’; ’g’]]

(Character constants are written with single quotes.)

An implementation of split

• Note the use of both tuple patterns and nested patterns. The @
operator is shorthand for List.append.

let rec loop w l =
 match l with
 [] -> [w]
 | (’ ’::ls) -> w :: (loop [] ls)
 | (c::ls) -> loop (w @ [c]) ls;;
val loop : char list -> char list -> char list list
 = <fun>
let split l = loop [] l;;
val split : char list -> char list list = <fun>

Aside: Local function definitions
• The loop function is completely local to split: there is no reason

for anybody else to use it — or even for anybody else to be able
to see it! It is good style in OCaml to write such definitions as
local bindings:

let split l =
 let rec loop w l =
 match l with
 [] -> [w]
 | (’ ’::ls) -> w :: (loop [] ls)
 | (c::ls) -> loop (w @ [c]) ls in
 loop [] l;;

Local function definitions
• In general, any let definition that can appear at the top

level

let ... ;;
e;;;

let ... in e;;;

• can also appear in a let ... in ... form

A Better Split ?
Our split function worked fine for the example we tried it
on. But here are some other tests:

split [’a’;’ ’;’ ’;’b’];;
- : char list list = [[’a’]; []; [’b’]]

split [’a’; ’ ’];;
- : char list list = [[’a’]; []]

Could we refine split so that it would leave out these
spurious empty lists in the result?

 A Better Split
• Sure. First rewrite the pattern match a little (without

changing its behavior)

let split l =
 let rec loop w l =
 match w, l with
 _, [] -> [w]
 | _, (’ ’::ls) -> w :: (loop [] ls)
 | _, (c::ls) -> loop (w @ [c]) ls in
 loop [] l;;

 A Better Split
• Then add a couple of clauses:

let better_split l =
 let rec loop w l =
 match w,l with
 [],[] -> []
 | _,[] -> [w]
 | [], (’ ’::ls) -> loop [] ls
 | _, (’ ’::ls) -> w :: (loop [] ls)
 | _, (c::ls) -> loop (w @ [c]) ls in
 loop [] l;;

better_split [’a’;’b’;’ ’;’ ’;’c’;’ ’;’d’;’ ’];;
- : char list list = [[’a’; ’b’]; [’c’]; [’d’]]
better_split [’a’;’ ’];;
- : char list list = [[’a’]]
better_split [’ ’;’ ’];;
- : char list list = []

Basic Exceptions
OCaml’s exception mechanism is roughly similar to that found in,
for example, Java.
We begin by defining an exception:

let rec fact n =
 if n<0 then raise Bad
 else if n=0 then 1
 else n * fact(n-1);;
fact (-3);;
Exception: Bad.

exception Bad;;

Now, encountering raise Bad will immediately terminate
evaluation and return control to the top level:

 (Not) catching exceptions
Naturally, exceptions can also be caught within a program
(using the try ... with ... form), but let’s leave that for
another day.

Defining New Types of Data

Predefined types
We have seen a number of data types:

int
bool
string
char
[x;y;z] lists
(x,y,z) tuples

Ocaml has a number of other built-in data types — in
particular, float, with operations like +., *., etc.
One can also create completely new data types.

The need for new types
• The ability to construct new types is an essential part of

most programming languages.

• For example, suppose we are building a (very simple)
graphics program that displays circles and squares. We
can represent each of these with three real numbers...

The need for new types
• A circle is represented by the co-ordinates of its center

and its radius. A square is represented by the co-ordinates
of its bottom left corner and its width.
– both shapes can be represented as elements of the type:

float * float * float
• two problems with using this type to represent circles

and squares.
– a bit long and unwieldy, both to write and to read.
– There is nothing to prevent us from mixing circles and squares

since their types are identical

let areaOfSquare (_,_,d) = d *. d;;

might accidentally apply the areaOfSquare function to a circle and
get a nonsensical result.

Data Types
We can improve matters by defining square as a new type:

This does two things:
– creates a new type called square that is different from any

other type in the system.
– creates a constructor called Square (with a capital S) that can

be used to create a square from three floats.

type square = Square of float * float * float;;

Square (1.1, 2.2, 3.3);;
- : square = Square (1.1, 2.2, 3.3)

Taking data types apart
We take types apart with (surprise, surprise...) pattern
matching

we can use constructors like Square both as functions
and as patterns.

let areaOfSquare s =
 match s with
 Square(_, _, d) -> d *. d;;
val areaOfSquare : square -> float = <fun>

let bottomLeftCoords s =
 match s with
 Square(x, y, _) -> (x, y);;
val bottomLeftCoords : square -> float * float = <fun>

Taking data types apart
These functions can be written a little more concisely by
combining the pattern matching with the function header:

let areaOfSquare (Square(_, _, d)) = d *. d;;
let bottomLeftCoords (Square(x, y, _)) = (x,y);;

Variant types
back to the idea of a graphics program, we obviously want to
have several shapes on the screen at once. For this we’d
probably want to keep a list of circles and squares, but such a
list would be heterogenous. How do we make such a list?
Answer: Define a type that can be either a circle or a square.
type shape = Circle of float * float * float
 | Square of float * float * float;;

Square (1.0, 2.0, 3.0);;
- : shape = Square (1.0, 2.0, 3.0)

Now both constructors Circle and Square create values of type
shape.

A type that can have more than one form is often called a
variant type.

Pattern matching on variants
We can also write functions that do the right thing on all
forms of a variant type. Again we use pattern matching:

let area s =
 match s with
 Circle (_, _, r) -> 3.14159 *. r *. r
 | Square (_, _, d) -> d *. d;;

area (Circle (0.0, 0.0, 1.5));;
- : float = 7.0685775

 Variant types
A heterogeneous list:

let l = [Circle (0.0, 0.0, 1.5);
 Square (1.0, 2.0, 1.0);
 Circle (2.0, 0.0, 1.5);
 Circle (5.0, 0.0, 2.5)];;

area (List.hd l);;
- : float = 7.0685775

Data Type for Optional Values
Suppose we are implementing a simple lookup function for
a telephone directory. We want to give it a string and get
back a number (say an integer), i.e, a function lookup whose
type is:

lookup: string -> directory -> int
where directory is a (yet to be decided) type that we’ll use
to represent the directory.
However, this isn’t quite enough. What happens if a given
string isn’t in the directory? What should lookup return?
There are several ways to deal with this issue. One is to raise
an exception. Another uses the following data type:

type optional_int = Absent | Present of int;;

Data Type for Optional Values
To see how this type is used, let’s represent our directory
as a list of pairs:

let directory = [("Joe", 1234); ("Martha", 5672);
 ("Jane", 3456); ("Ed", 7623)];;
let rec lookup s l =
 match l with
 [] -> Absent
 | (k,i)::t -> if k = s then Present(i)
 else lookup s t;;

lookup "Jane" directory;;
- : optional_int = Present 3456

lookup "Karen" directory;;
- : optional_int = Absent

Built-in options
options are often useful in functional programming,
OCaml provides a built-in type t option for each type t.
Its constructors are None (corresponding to Absent) and
Some (for Present)

let rec lookup s l =
 match l with
 [] -> None
 (k,i)::t -> if k = s then Some(i)
 else lookup s t;;

lookup "Jane" directory;;
- : optional_int = Some 3456

Enumerations
The option type has one variant, None, that is a
“constant” constructor carrying no data values with it.
Data types in which all the variants are constants can
actually be quite useful...

type color = Red | Yellow | Green;;
let next c =
match c with Green -> Yellow | Yellow -> Red
| Red -> Green;

type color = Red | Yellow | Green;;
let next c =
 match c with Green -> Yellow | Yellow -> Red | Red -> Green;

type day = Sunday | Monday | Tuesday | Wednesday
 | Thursday | Friday | Saturday;;
let weekend d =
 match d with
 Saturday -> true
 | Sunday -> true
 | _ -> false;;

A Boolean Data Type
A simple data type can be used to replace the built-in
booleans, by using the constant constructors True and
False to represent true and false . Here use different
names as needed to avoid confusion between our
booleans and the built-in ones:

type color = Red | Yellow | Green;;
let next c =
match c with Green -> Yellow | Yellow -> Red
| Red -> Green;

type myBool = False | True;;
let myNot b = match b with False -> True | True -> False;;
let myAnd b1 b2 =
 match (b1,b2) with
 (True, True) -> True
 | (True, False) -> False
 | (False, True) -> False
 | (False, False) -> False;;

Note that the behavior of myAnd is not quite the same as the
built-in &&!

Recursive Types
Consider the tiny language of arithmetic expressions
defined by the following grammar:

exp ::= number
 (exp + exp)
 (exp - exp)
 (exp * exp)

Recursive Types
This grammar can be translated directly into a datatype
definition:

type ast =
 ANum of int
 | APlus of ast * ast
 | AMinus of ast * ast
 | ATimes of ast * ast ;;

Notes:
– This datatype (like the original grammar) is recursive.
– The type ast represents abstract syntax trees, which capture

the underlying tree structure of expressions, suppressing
surface details such as parentheses

An evaluator for expressions
 write an evaluator for these expressions：

val eval : ast -> int = <fun>

eval (ATimes (APlus (ANum 12, ANum 340), ANum 5));;
- : int = 1760

An evaluator for expressions
The solution uses a recursive function plus a pattern
match.

let rec eval e =
 match e with
 ANum I -> i
 | APlus (e1,e2) -> eval e1 + eval e2
 | AMinus (e1,e2) -> eval e1 - eval e2
 | ATimes (e1,e2) -> eval e1 * eval e2;;

Polymorphism

Polymorphism
We encountered the concept of polymorphism very
briefly. Let’s look at it now in a bit more detail

let rec last l =
 match l with
 [] -> raise Bad
 | [x] -> x
 | _::y -> last y

What type should we give to the parameter l?

It doesn’t matter what type of objects are stored in the list: we
could make it int list or bool list. However, if we chose one of
these types, would not be able to apply last to the other.

Polymorphism
Instead, we can give l the type ’a list, standing for an arbitrary type.
When we use the function, Ocaml will figure out what type we need.

This version of last is said to be polymorphic, because it can be applied to
many different types of arguments. (“Poly” = many, “morph” = shape.)
In other words,
 last : ’a list -> ’a
can be read, “last is a function that takes a list of elements of
any type alpha and returns an element of alpha.”

Here, the type of the elements of l is ’a. This is a type variable,
which can instantiated each time we apply last, by replacing ’a with any
type that we like.

A polymorphic append

let rec append (l1: ’a list) (l2: ’a list) =
 if l1 = [] then l2
 else List.hd l1 :: append (List.tl l1) l2;;
val append : ’a list -> ’a list -> ’a list = <fun>

append [4; 3; 2] [6; 6; 7];;
- : int list = [4; 3; 2; 6; 6; 7]

append ["cat"; "in"] ["the"; "hat"];;
- : string list = ["cat"; "in"; "the"; "hat"]

Programming With Functions

Functions as Data
Functions in OCaml are first class — they have the same
rights and privileges as values of any other types. E.g.,
they can be

– passed as arguments to other functions
– returned as results from other functions
– stored in data structures such as tuples and lists
– etc.

map: “apply-to-each”
OCaml has a predefined function List.map that takes a
function f and a list l and produces another list by applying f to
each element of l.
We’ll soon see how to define List.map, but first let’s look at
some examples.

List.map square [1; 3; 5; 9; 2; 21];;
- : int list = [1; 9; 25; 81; 4; 441]

List.map not [false; false; true];;
- : bool list = [true; true; false]

Note that List.map is polymorphic: it works for lists of
integers, strings, booleans, etc.

More on map
An interesting feature of List.map is its first argument is
itself a function. For this reason, we call List.map a
higher-order function.

Natural uses for higher-order functions arise frequently in
programming. One of OCaml’s strengths is that it makes
higher-order functions very easy to work with.

In other languages such as Java, higher-order functions
can be (and often are) simulated using objects.

filter
Another useful higher-order function is List.filter.
When applied to a list l and a boolean function p, it builds
a list of the elements from l for which p returns true.
let rec even (n:int) =
 if n=0 then true else if n=1 then false
 else if n<0 then even (-n) else even (n-2);;
val even : int -> bool = <fun>

List.filter even [1; 2; 3; 4; 5; 6; 7; 8; 9];;
- : int list = [2; 4; 6; 8]

List.filter palindrome [[1]; [1; 2; 3]; [1; 2; 1]; []];;
- : int list list = [[1]; [1; 2; 1]; []]

Defining map
List.map comes predefined in the OCaml system, but
there is othing magic about it—we can easily define our
own map function with the same behavior.
let rec map (f: ’a->’b) (l: ’a list) =
 if l = [] then []
 else f (List.hd l) :: map f (List.tl l)
val map : (’a -> ’b) -> ’a list -> ’b list = <fun>

map String.length ["The"; "quick"; "brown"; "fox"];;
- : int list = [3; 5; 5; 3]

The type of map is probably even more polymorphic than you
expected! The list that it returns can actually be of a different
type from its argument:

Defining filter
Similarly, we can define our own filter that behaves the
same as List.filter.

let rec filter (p: ’a->bool) (l: ’a list) =
 if l = [] then []
 else if p (List.hd l) then
 List.hd l :: filter p (List.tl l)
 else
 filter p (List.tl l)
val filter : (’a -> bool) -> ’a list -> ’a list = <fun>>

Multi-parameter functions

let foo x y = x + y;;
val foo : int -> int -> int = <fun>

let bar (x,y) = x + y;;
val bar : int * int -> int = <fun>

We have seen two ways of writing functions with multiple
parameters:

Another useful higher-order function: fold

In general:
 f [a1; ...; an] b
is
 f a1 (f a2 (... (f an b) ...)).

let rec fold f l acc =
 match l with
 [] -> acc
 | a::l -> f a (fold f l acc);;
val fold : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

fold (fun a b -> a + b) [1; 3; 5; 100] 0;;
- : int = 109

Using fold
Most of the list-processing functions we have seen can be
defined compactly in terms of fold:

let listSum l =
 fold (fun a b -> a + b) l 0;;
val listSum : int list -> int = <fun>

let length l =
 fold (fun a b -> b + 1) l 0;;
val length : ’a list -> int = <fun>

let filter p l =
 fold (fun a b -> if p a then (a::b) else b) l [];;

Using fold

(* List of numbers from m to n, as before *)
 let rec fromTo m n =
 if n < m then []
 else m :: fromTo (m+1) n;;
val fromTo : int -> int -> int list = <fun>

let fact n =
 fold (fun a b -> a * b) (fromTo 1 n) 1;;
val fact : int -> int = <fun>

Forms of fold
OCaml List module actually provides two folding
functions

The one we’re calling fold is List.fold_right.
List.fold_left performs the same basic operation but
takes its arguments in a different order.

List.fold_left
 : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a
List.fold_right
 : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

The unit type
OCaml provides another built-in type called unit, with just
one inhabitant, written ().

let x = ();;
val x : unit = ()

let f () = 23 + 34;;
val f : unit -> int = <fun>

f ();;
- : int = 57

Why is this useful?

Use of unit
A function from unit to ’a is a delayed computation of
type ’a. When we define the function...

... the long and complex calculation is just boxed up in a
closure that we can save for later (by binding it to a
variable, e.g.). When we actually need the result, we apply
f to () and the calculation actually happens:

let f () = <long and complex calculation>;;
val f : unit -> int = <fun>

f ();;
- : int = 57

Thunks
A function accepting a unit argument is often called a
thunk.
Thunks are widely used in functional programming.

Suppose we are writing a function where we need to
make sure that some “finalization code” gets executed,
even if an exception is raised.

Thunks
let read file =
 let chan = open_in file in
 let finalize () = close_in chan in
 try
 let nbytes = in_channel_length chan in
 let string = String.create nbytes in
 really_input chan string 0 nbytes;
 finalize ();
 string
 with exn ->
 (* finalize channel *)
 finalize ();
 (* re-raise exception *)
 raise exn;;

演示者
演示文稿备注
We can avoid duplicating the finalization code by wrapping it in athunk:The try...with... form is OCaml’s syntax for handlingexceptions.)

Thunks

let read file =
 let chan = open_in file in
 try
 let nbytes = in_channel_length chan in
 let string = String.create nbytes in
 really_input chan string 0 nbytes;
 close_in chan;
 string
 with exn ->
 (* finalize channel *)
 close_in chan;
 (* re-raise exception *)
 raise exn;;

Thunks: go further...
let unwind_protect body finalize =
 try
 let res = body() in
 finalize();
 res
 with exn ->
 finalize();
 raise exn;;
let read file =
 let chan = open_in file in
 unwind_protect
 (fun () ->
 let nbytes = in_channel_length chan in
 let string = String.create nbytes in
 really_input chan string 0 nbytes;
 string)
 (fun () -> close_in chan);;

Reference Cell
let fact n =
 let result = ref 1 in
 for i = 2 to n do
 result := i * !result
 done;
 !result;;
val fact : int -> int = <fun>

fact 5;;
 - : int = 120

updatable memory cells, called references: ref init returns a new
cell with initial contents init, !cell returns the current contents of
cell, and cell := v writes the value v into cell.

The rest of OCaml
• We’ve seen only a small part of the OCaml

language. Some other highlights:
– advanced module system
– imperative features (ref cells, arrays, etc.); the

“mostly functional” programming style

• objects and classes

Closing comments on OCaml
• Some common strong points of OCaml, Java, C#, etc.

– strong, static typing (no core dumps!)
– garbage collection (no manual memory management!!)

• Some advantages of Ocaml compared to Java, etc.
– excellent implementation (fast, portable, etc.)
– powerful module system
– streamlined support for higher-order programming
– sophisticated pattern matching (no “visitor patterns”)
– parametric polymorphism (Java and C# are getting this “soon”)

• Some disadvantages:
– smaller developer community
– smaller collection of libraries
– object system somewhat clunky

Utilities
in

OCaml System

Where are we going?
• Overall goal: we want to turn strings of

characters – code –into computer instructions
• Easiest to break this down into phases:

– First, turn strings into abstract syntax trees (ASTs) –
this is parsing

– Next, turn abstract syntax trees into executable
instructions – compiling or interpreting

Lexing and Parsing
• Strings are converted into ASTs in two phases:

Lexing Convert strings (streams of characters) into lists
(or streams) of tokens,, representing words in
the language (lexical analysis)

Parsing Convert lists of tokens into abstract syntax
trees (syntactic analysis)

Lexing
• With lexing, we break sequences of characters into

different syntactic categories, called tokens.
• As an example, we could break:

asd 123 jkl 3.14

 into this:

 [String ‘‘asd’’, Int 123; String ‘‘jkl’’; Float 3.14]

Lexing Strategy
• Our strategy will be to leverage regular expressions and

finite automata to recognize tokens:
– each syntactic category will be described by a

regular expression (with some extended syntax)
– words will be recognized by an encoding of a

corresponding finite state machine

• However, this still leaves us with a problem. How do we

pull multiple words out of a string, instead of just
recognizing a single word?

Lexing : Multiple tokens
• To solve this, we will modify the behavior of the DFA.

– if we find a character where there is no transition from the
current state, stop processing the string

– if we are in an accepting state, return the token corresponding
to what we found as well as the remainder of the string

– now, use iterator or recursion to keep pulling out more tokens
– if we were not in an accepting state, fail – invalid syntax

Lexing Options
• We could write a lexer by writing regular expressions,

and then translating these by hand into a DFA.
– sounds tedious and repetitive – perfect for a computer!

• Can we write a program that takes regular expressions
and generates automata for us?

• Someone already did – Lex!
– GNU version of this is flex
– OCaml version of this is ocamllex

How does it work?
• We need a few core items to get this working:

– Some way to identify the input string – we’ll call this the
lexing buffer

– A set of regular expressions that correspond to tokens in our
language

– A corresponding set of actions to take when tokens are
matched

• The lexer can then take the regular expressions to build

state machines, which are then used to process the lexing
buffer.
– If we reach an accept state and can take no further transitions,

we can apply the actions.

Syntax of lexer definitions
(*head sections*)
{ header }
(*definition sections*)
let ident = regexp …
(*rule sections*)
rule entrypoint [arg1… argn] =
 parse regexp { action }
 | …
 | regexp { action }
and entrypoint [arg1… argn] =
 parse …
and …
(*rule sections*)
{ trailer }

Comments are delimited by (* and *), as in OCaml.

The parse keyword can be replaced by the shortest keyword

Entry points
• The names of the entry points must be valid identifiers

for OCaml values (starting with a lowercase letter).
• Each entry point becomes an OCaml function that takes

n+1 arguments
– arguments arg1… argn must be valid identifiers for Ocaml
– the extra implicit last argument being of type Lexing.lexbuf,

Characters are read from the Lexing.lexbuf argument and
matched against the regular expressions provided in the rule,
until a prefix of the input matches one of the rule.

– The corresponding action is then evaluated and returned as
the result of the function.

Regular Expressions in ocamllex
• The regular expression format is similar to what we’ve seen so

far, but still slightly different.
– ‘ regular-char ∣ escape-sequence ’ A character constant, with the

same syntax as OCaml character constants. Match the denoted character.
– _ (underscore) Match any character.
– eof Match the end of the lexer input.
– " { string-character } “ A string constant, with the same syntax as OCaml

string constants. Match the corresponding sequence of characters.
– [character-set] Match any single character belonging to the given

character set. Valid character sets are: single character constants ' c ';
ranges of characters ' c1 ' - ' c2 ' (all characters between c1 and c2,
inclusive); and the union of two or more character sets, denoted by
concatenation.

– [^ character-set] Match any single character not belonging to the given
character set.

http://caml.inria.fr/pub/docs/manual-ocaml-400/lex.html#escape-sequence
http://caml.inria.fr/pub/docs/manual-ocaml-400/lex.html#string-character

Regular Expressions in ocamllex
– regexp1 # regexp2 (difference of character sets) Regular

expressions regexp1 and regexp2 must be character sets
defined with […] (or a a single character expression or
underscore _). Match the difference of the two specified
character sets.

– regexp *(repetition) Match the concatenation of zero or
more strings that match regexp.

– regexp +(strict repetition) Match the concatenation of one or
more strings that match regexp.

– regexp ?(option) Match the empty string, or a string
matching regexp.

http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp

Regular Expressions in ocamllex
– regexp1 | regexp2(alternative) Match any string that

matches regexp1 or regexp2

– regexp1 regexp2(concatenation) Match the concatenation of
two strings, the first matching regexp1, the second matching
regexp2.

– (regexp) Match the same strings as regexp.
– ident Reference the regular expression bound to ident by an

earlier let ident = regexp definition.
– regexp as ident Bind the substring matched by regexp to

identifier ident.

http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/lex.html#ident
http://caml.inria.fr/pub/docs/manual-ocaml-400/lex.html#ident
http://caml.inria.fr/pub/docs/manual-ocaml-400/lex.html#ident
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/lex.html#ident
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/lex.html#ident

Actions
Can be arbitrary OCaml expressions. They are evaluated in a context
where the identifiers defined by using the as construct are bound to
subparts of the matched string.
Additionally, lexbuf is bound to the current lexer buffer. Some typical uses
for lexbuf:

– Lexing.lexeme lexbuf Return the matched string.
– Lexing.lexeme_char lexbuf n Return the nth character in the matched

string. The first character corresponds to n = 0.
– Lexing.lexeme_start lexbuf Return the absolute position in the input

text of the beginning of the matched string (i.e. the offset of the first
character of the matched string). The first character read from the
input text has offset 0.

– Lexing.lexeme_end lexbuf Return the absolute position in the input
text of the end of the matched string (i.e. the offset of the first character
after the matched string).

– entrypoint [exp1… expn] lexbuf Recursively call the lexer on the
given entry point

Header and trailer
• Can be arbitrary OCaml text enclosed in curly

braces.
– Either or both can be omitted. If present, the header

text is copied as is at the beginning of the output file
and the trailer text at the end.

– Typically, the header section contains the open
directives required by the actions, and possibly some
auxiliary functions used in the actions.

Sample Lexer

1 rule main = parse
2 | [’0’-’9’]+ { print_string "Int\n"}
3 | [’0’-’9’]+’.’[’0’-’9’]+ { print_string "Float\n"}
4 | [’a’-’z’]+ { print_string "String\n"}
5 | _ { main lexbuf }
6 {
7 let newlexbuf = (Lexing.from_channel stdin) in
8 print_string "Ready to lex.\n";
9 main newlexbuf
10 }

Mechanics of Using ocamllex
• Lexer definitions using ocamllex are written in a file

with a .mll extension.
– including the regular expressions, with associated actions for

each.

• OCaml code for the lexer is generated with
 ocamllex lexer.mll

 This generates the code for the lexer in file file.ml
– This file defines one lexing function per entry point in the

lexer definition

Options for ocamllex

• The following command-line options are recognized by
ocamllex.
– ml Output code that does not use OCaml’s built-in automata

interpreter. Instead, the automaton is encoded by OCaml functions. This
option mainly is useful for debugging ocamllex, using it for production
lexers is not recommended.

– o output-file Specify the name of the output file produced by ocamllex.
The default is the input file name with its extension replaced by .ml.

– q Quiet mode. ocamllex normally outputs informational messages to
standard output. They are suppressed if option -q is used.

– v or –version Print version string and exit.
– Vnum Print short version number and exit.
– help or – help Display a short usage summary and exit.

Parsing
• Convert lists of tokens into abstract syntax trees

• Someone already did – Yacc!

– GNU: bison
– Ocaml: ocamlyacc

Yacc
• provides a general tool for describing the input to a

computer program.
– The Yacc user specifies the structures of his input,

together with code to be invoked as each such
structure is recognized.

– Yacc turns such a specification into a subroutine that
handles the input process; frequently, it is
convenient and appropriate to have most of the flow
of control in the user's application handled by this
subroutine.

ocamlyacc Command
• Produces a parser from a context-free grammar

specification with attached semantic actions, in the style
of yacc.

• Executing
ocamlyacc options grammar.mly

produces OCaml code for a parser in the file
grammar.ml, and its interface in file grammar.mli.
– The generated module defines one parsing function per entry

point in the grammar. These functions have the same names as
the entry points.

– Parsing functions take as arguments a lexical analyzer (a
function from lexer buffers to tokens) and a lexer buffer, and
return the semantic attribute of the corresponding entry point.

Options for ocamlyacc
-bprefix Name the output files prefix.ml, prefix.mli,

prefix.output, instead of the default naming
convention.

-q This option has no effect.
-v Generate a description of the parsing tables and a report

on conflicts resulting from ambiguities in the grammar.
The description is put in file grammar.output.

-version Print version string and exit.
-vnum Print short version number and exit.
- Read the grammar specification from standard input. The

default output file names are stdin.ml and stdin.mli.
-- file Process file as the grammar specification, even if its name

starts with a dash (-) character. This option must be the
last on the command line.

Syntax of grammar definitions
%{
 header
%}
 declarations
%%
 rules
%%
 trailer
Comments are enclosed between /* and */ (as in C) in the
“declarations” and “rules” sections, and between (* and *)
(as in OCaml) in the “header” and “trailer” sections.

header and trailer
• OCaml code that is copied as is into file

grammar.ml.
– Both sections are optional.
– The header goes at the beginning of the output file;

it usually contains open directives and auxiliary
functions required by the semantic actions of the
rules.

– The trailer goes at the end of the output file.

Declarations
given one per line. They all start with a % sign.

%token constr … constr
%token < typexpr > constr …

Declare the given symbols constr … constr as tokens (terminal symbols).
%start symbol … symbol

 Declare the given symbols as entry points for the grammar. For each
entry point, a parsing function with the same name is defined in the
output module

%type < typexpr > symbol … symbol
Specify the type of the semantic attributes for the given symbols. This is
mandatory for start symbols only

%left symbol … symbol
%right symbol … symbol
%nonassoc symbol … symbol

http://caml.inria.fr/pub/docs/manual-ocaml-400/manual011.html#constr
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual011.html#constr
http://caml.inria.fr/pub/docs/manual-ocaml-400/types.html#typexpr
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual011.html#constr
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual011.html#constr
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual011.html#constr
http://caml.inria.fr/pub/docs/manual-ocaml-400/types.html#typexpr

Rules
The syntax for rules is as usual:
nonterminal :
 symbol … symbol { semantic-action }
 | …
 | symbol … symbol { semantic-action }
;
Rules can also contain the %prec symbol directive in the right-hand
side part, to override the default precedence and associativity of
the rule with the precedence and associativity of the given symbol.
Semantic actions are arbitrary OCaml expressions, that are
evaluated to produce the semantic attribute attached to the
defined nonterminal.
The semantic actions can access the semantic attributes of the
symbols in the right-hand side of the rule with the $ notation:

– $1 is the attribute for the first (leftmost) symbol, $2 is the attribute for
the second symbol, etc.

Utilities
in Environment

make
make is one critical utility in the Unix/Linux-like
environment
• 自动管理、检查文件之间的依赖关系
• 自动判断哪些文件要重新编译, 调用外部程序
进行处理
– 根据文件的修改时间

• 常用于编译源文件生成目标文件, 将目标文件
链接成可执行文件或库

makefile
• 用文件 ” makefile” 或 ” Makefile” 描述依赖和
动作, 动作由shell 执行

• 命令make解释”makefile”

Makefile for hello

$make
gcc hello.c –o hello

hello: hello.c
 gcc hello.c -o hello

e.g., GNU make

目标和依赖

makefile 由如下的一系列规则组成

target1 target2 target3 : prerequisite1, prerequisite2
command1
command2

目标和依赖说明
• 目标(target): 要做的事情, 要生成的文件

• 倚赖(prerequisite): 在生成目标前, 其所有倚赖
必须存在

• 命令(command): 根据依赖生成目标的shell 命令.
命令前必须是缩进(tab)

• makefile 中的第一个规则称为缺省目标(goal)

工作过程
• 如果在命令行给出了目标, 则make 找到该目
标的规则; 否则执行缺省目标

• 对于每个规则, 首先查看所有的依赖和目标
– 若某个依赖有规则, 则首先处理该依赖的规则
– 若某个依赖的时间比目标新, 则执行命令更新目标
– 命令由shell 执行, 若执行错误, 则中止处理

规则
• 显式规则(explicit rule): makefile 中显式声明的规则,
如 vpath.o variable.o: make.h config.h dep.h

• 隐式规则(implicit rule): make 内置的模式规则或后缀
规则
– 在GNU make 中, 后缀规则可被模式规则代替

• 模式规则(pattern rule): 用通配符取代显式的
文件名, 跟Bourne sh 相同, 如

 ~ * ? [...] [^...]

变量

在makefile 中可以定义变量: Name = Value
随后通过$(Name) 或${Name} 访问
make 的自动变量

$@ 目标文件名

$% 档案文件(库) 的成员

$< 第一个依赖文件的文件名

$? 所有比目标文件新的倚赖文件名列表, 以空格分隔

$^ 所有依赖文件名列表, 以空格分隔

$+ 和$^ 类似, 包含重复文件名

$* 目标文件名去除后缀后的部分

An Implementation
for Arithmetic Expression

Demo

	编程语言的设计原理�Design Principles of Programming Languages
	Chapter 0+: Implementation
	A Quick Tour of OCaml
	Resources
	 Why Ocaml?
	OCaml
	Functional Programming
	OCaml used in the Course
	The Top Level
	Expressions
	Giving things names
	Functions
	Functions
	Type boolean
	Conditional expressions
	Recursive functions
	Recursive functions: Making change
	Recursive functions: Making change
	Recursive functions: Making change
	Recursive functions: Making change
	Recursive functions: Making change
	Recursive functions: Making change
	Lists
	Lists are homogeneous
	Constructing Lists
	Constructing Lists
	Taking Lists Apart
	More list examples
	Recursion on lists
	Consing on the right
	A better rev
	Tail recursion
	Basic Pattern Matching
	Basic Pattern Matching
	Complex Patterns
	Type Inference
	Type Inference
	Polymorphism (first taste)
	Tuples
	Tuples are not lists
	Tuples and pattern matching
	Example: Finding words **
	An implementation of split
	Aside: Local function definitions
	Local function definitions
	A Better Split ?
	 A Better Split
	 A Better Split
	Basic Exceptions
	 (Not) catching exceptions
	幻灯片编号 51
	Predefined types
	The need for new types
	The need for new types
	Data Types
	Taking data types apart
	Taking data types apart
	Variant types
	Pattern matching on variants
	 Variant types
	Data Type for Optional Values
	Data Type for Optional Values
	Built-in options
	Enumerations
	A Boolean Data Type
	Recursive Types
	Recursive Types
	An evaluator for expressions
	An evaluator for expressions
	幻灯片编号 70
	Polymorphism
	Polymorphism
	A polymorphic append
	幻灯片编号 74
	Functions as Data
	map: “apply-to-each”
	More on map
	filter
	Defining map
	Defining filter
	Multi-parameter functions
	Another useful higher-order function: fold
	Using fold
	Using fold
	Forms of fold
	The unit type
	Use of unit
	Thunks
	Thunks
	Thunks
	Thunks:　go further...
	Reference Cell
	The rest of OCaml
	Closing comments on OCaml
	Utilities �in�OCaml System
	Where are we going?
	Lexing and Parsing
	Lexing
	Lexing Strategy
	Lexing : Multiple tokens
	Lexing Options
	How does it work?
	Syntax of lexer definitions
	Entry points
	Regular Expressions in ocamllex
	Regular Expressions in ocamllex
	Regular Expressions in ocamllex
	Actions
	Header and trailer
	Sample Lexer
	Mechanics of Using ocamllex
	Options for ocamllex
	Parsing
	Yacc
	ocamlyacc Command
	Options for ocamlyacc
	Syntax of grammar definitions
	header and trailer
	Declarations
	Rules
	Utilities �in Environment
	make
	makefile
	Makefile for hello
	目标和依赖
	目标和依赖说明
	工作过程
	规则
	变量
	An Implementation �for Arithmetic Expression��Demo

