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A Quick Tour of OCaml 



Resources 

• Overview 
– http://ocaml.org/learn/tutorials/basics.html 

• Tutorials 
– http://ocaml.org/learn/tutorials/ 

• Download 
– http://caml.inria.fr/download.en.html 

http://ocaml.org/learn/tutorials/


 Why Ocaml?  
The material in this course is mostly conceptual and 
mathematical.  However: 

– Some of the ideas are easier to grasp if you can “see 
them work” 

– Experimenting with small implementations of 
programming languages is an excellent way to 
deepen intuitions 

 
OCaml language is chosen for these purposes 
  



OCaml 
• A large and powerful language  (safety and reliability )  

– the most popular variant of the Caml language 
• Categorical Abstract Machine Language(分类抽象机语言) 
• Collaborative Application Markup Language(协作应用程序标记语言) 

– extending the core Caml language with 
• a fully-fledged object-oriented layer 
• powerful module system 
• a sound, polymorphic type system featuring type inference.  

– a functional programming language 
•  i.e., a language in which the functional programming style 

is the dominant idiom 
 

• OCaml system is open source software 
 

http://caml.inria.fr/about/index.en.html


Functional Programming 
• Functional style can be described as a combination of... 

– persistent data structures (which, once built, are never 
changed) 

– recursion as a primary control structure 
– heavy use of higher-order functions (that take functions as 

arguments and/or return functions as results) 

• Imperative languages, by contrast, emphasize... 
– mutable data structures 
– looping rather than recursion 
– first-order rather than higher-order programming (though 

many object-oriented design patterns involve higher-order 
idioms—e.g., Subscribe/Notify, Visitor, etc.) 



OCaml used in the Course 
• Concentrates just on the “core” of the language, 

ignoring most of its features, like  modules or 
objects.  For    
– some of the ideas in the course are easier to grasp if 

you can “see them work” 
– experimenting with small implementations of 

programming languages is an excellent way to 
deepen intuitions 

 



The Top Level 
• OCaml provides both an interactive top level and a compiler 

that produces standard executable binaries.  
– The top level provides a convenient way of experimenting with 

small programs. 
 

• The mode of interacting with the top level is typing in a series 
of expressions;  OCaml evaluates them as they are typed and 
displays the results (and their types).  In the interaction ,  
– lines beginning with # are inputs 
– lines beginning with - are the system’s responses.  

 
– Note that inputs are always terminated by a double semicolon ;; 



Expressions 
OCaml is an expression language. A program is an 
expression. The “meaning” of the program is the value of 
the expression. 

 
# 16 + 18;; 
- : int = 34 
 
# 2*8 + 3*6;; 
- : int = 34 



Giving things names 
The let construct gives a name to the result of an 
expression so that it can be used later. 

 

# let inchesPerMile = 12*3*1760;; 
val inchesPerMile : int = 63360 
 
# let x = 1000000 / inchesPerMile;; 
val x : int = 15 



Functions 
# let cube (x:int) = x*x*x;; 
val cube : int -> int = <fun> 
# cube 9;; 
- : int = 729 

 
• We call x the parameter of the function cube; the expression 

x*x*x is its body. The expression cube 9 is an application of cube 
to the argument 9. 

• The type printed by OCaml,  int->int  (pronounced “int arrow int”) 
indicates that cube is a function that should be applied to an 
integer argument and that returns an integer.  

• Note that OCaml responds to a function declaration by printing 
just  <fun> as the function’s “value. 



Functions 
A function with two parameters: 
 
 

The type printed for sumsq is int->int->int, indicating that it should 
be applied to two integer arguments and yields an integer as its result. 
Note that the syntax for invoking function declarations in OCaml  is 
slightly different from languages in the C/C++/Java family:  
use cube 3 and sumsq 3 4  rather than cube(3) and sumsq(3,4). 

# let sumsq (x:int) (y:int) = x*x + y*y;; 
val sumsq : int -> int -> int = <fun> 
 
# sumsq 3 4;; 
- : int = 25 



Type boolean 
There are only two values of type boolean: true and false. 
Comparison operations return boolean values. 

# 1 = 2;; 
- : bool = false 
 
# 4 >= 3;; 
- : bool = true 

 
not is a unary operation on booleans 

# not (5 <= 10);; 
- : bool = false 
# not (2 = 2);; 
- : bool = false 



Conditional expressions 
The result of the conditional expression if B then E1 else E2 is either 
the result of E1 or that of E2, depending on whether the result of B 
is true or false. 

# if 3 < 4 then 7 else 100;; 
- : int = 7 
# if 3 < 4 then (3 + 3) else (10 * 10);; 
- : int = 6 
# if false then (3 + 3) else (10 * 10);; 
- : int = 100 
# if false then false else true;; 
- : bool = true 



Recursive functions 
We can translate inductive definitions directly into recursive 
functions. 

# let rec sum(n:int) = if n = 0 then 0 else n + sum(n-1);; 
val sum : int -> int = <fun> 
# sum(6);; 
- : int = 21 
 
# let rec fact(n:int) = if n = 0 then 1 else n * fact(n-1);; 
val fact : int -> int = <fun> 
# fact(6);; 
- : int = 720 

The rec after the let tells OCaml this is a recursive function — 
one that needs to refer to itself in its own body. 



Recursive functions: Making change 
Another example of recursion on integer arguments: Suppose you 
are a bank and therefore have an “infinite” supply of coins (pennies, 
nickles, dimes, and quarters, and silver dollars), and you have to 
give a customer a certain sum. How many ways are there of doing 
this? 
 
For example, there are 4 ways of making change for 12 cents: 

– 12 pennies 
– 1 nickle and 7 pennies 
– 2 nickles and 2 pennies 
– 1 dime and 2 pennies 

 
We want to write a function change that, when applied to 12, 
returns 4. 



Recursive functions: Making change  

To get started, let’s consider a simplified variant of the 
problem where the bank only has one kind of coin: 
pennies. 
In this case, there is only one way to make change for 
a given amount: pay the whole sum in pennies! 

 
# (* No. of ways of paying a in pennies *) 
let rec changeP (a:int) = 1;; 

 
That wasn’t very hard. 



Recursive functions: Making change  
Now suppose the bank has both nickels and pennies. 
If a is less than 5 then we can only pay with pennies. If 
not, we can do one of two things:  

– Pay in pennies; we already know how to do this. 
– Pay with at least one nickel. The number of ways of 

doing this is the number of ways of making change 
(with nickels and pennies) for a-5. 

 
# (* No. of ways of paying in pennies and nickels *) 
let rec changePN (a:int) = 
 if a < 5 then changeP a 
 else changeP a + changePN (a-5); 



Recursive functions: Making change 
Continuing the idea for dimes and quarters: 

# (* ... pennies, nickels, dimes *) 
let rec changePND (a:int) = 
 if a < 10 then changePN a 
 else changePN a + changePND (a-10);; 
 
# (* ... pennies, nickels, dimes, quarters *) 
let rec changePNDQ (a:int) = 
 if a < 25 then changePND a 
 else changePND a + changePNDQ (a-25);; 



Recursive functions: Making change 

# (* Pennies, nickels, dimes, quarters, dollars *) 
let rec change (a:int) = 
 if a < 100 then changePNDQ a 
 else changePNDQ a + change (a-100);; 



Recursive functions: Making change 
Some tests:  
# change 5;; 
- : int = 2 
# change 9;; 
- : int = 2 
# change 10;; 
- : int = 4 
# change 29;; 
- : int = 13 
# change 30;; 
- : int = 18 
# change 100;; 
- : int = 243 
# change 499;; 
- : int = 33995 



Lists 
• One handy structure for storing a collection of data values is a 

list.  
– provided as a built-in type in OCaml and a number of other popular 

languages (e.g., Lisp, Scheme, and Prolog—but not, unfortunately, 
Java). 

– built in OCaml by writing out its elements, enclosed in square 
brackets and separated by semicolons. 

 
# [1; 3; 2; 5];; 
- : int list = [1; 3; 2; 5] 
 

• The type that OCaml prints for this list is pronounced either 
“integer list” or “list of integers”. 

• The empty list,  written [],  is sometimes called “nil.” 



Lists are homogeneous 

• OCaml does not allow different types of elements to 
be mixed within the same list: 
 
# [1; 2; "dog"];; 
Characters 7-13: 

 
• This expression has type string list but is here used 

with type int list 



Constructing Lists 
OCaml provides a number of built-in operations that return lists. 
The most basic one creates a new list by adding an element to the 
front of an existing list.   

– written :: and pronounced “cons” (for it constructs lists ). 

 # 1 :: [2; 3];; 
- : int list = [1; 2; 3] 

 
# let add123 (l: int list) = 1 :: 2 :: 3 :: l;; 
val add123 : int list -> int list = <fun> 
 
# add123 [5; 6; 7];; 
- : int list = [1; 2; 3; 5; 6; 7] 
 
# add123 [];; 
- : int list = [1; 2; 3] 



Constructing Lists 
• Any list can be built by “consing” its elements together: 

     In fact, [ x1; x2; . . . ; xn ] is simply a shorthand for 
                x1 :: x2 :: . . . :: xn :: [] 
• Note that, when omitting parentheses from an 

expression involving several uses of ::,  we associate to 
the right  
– i.e., 1::2::3::[]  means the same thing as 1::(2::(3::[])) 
– By contrast, arithmetic operators like + and - associate to the 

left: 1-2-3-4 means ((1-2)-3)-4. 

# 1 :: 2 :: 3 :: 2 :: 1 :: [] ;;; 
 : int list = [1; 2; 3; 2; 1] 



Taking Lists Apart 

• OCaml provides two basic operations for 
extracting the parts of a list. 

List.hd (pronounced “head”) returns the first 
element of a list. 

# List.hd  [1; 2; 3];; 
- : int = 1 

 List.tl (pronounced “tail”) returns everything but the 
first element. 

# List.tl [1; 2; 3];; 
- : int list = [2; 3] 



More list examples 

# List.tl (List.tl [1; 2; 3]);; 
- : int list = [3] 
 
# List.tl (List.tl (List.tl [1; 2; 3]));; 
- : int list = [] 
 
# List.hd (List.tl (List.tl [1; 2; 3]));; 
- : int = 3 



Recursion on lists 

• Lots of useful functions on lists can be written using 
recursion.   
– Here’s one that sums the elements of a list of numbers: 
 
# let rec listSum (l:int list) = 

if l = [] then 0 
else List.hd l + listSum (List.tl l);; 

 
# listSum [5; 4; 3; 2; 1];; 
- : int = 15 



Consing on the right 
# let rec snoc (l: int list) (x: int) = 

if l = []  then x::[] 
else List.hd l :: snoc(List.tl l) x;; 

val snoc : int list -> int -> int list = <fun> 
 
# snoc [5; 4; 3; 2] 1;; 
- : int list = [5; 4; 3; 2; 1] 



A better rev 
# (* Adds the elements of l to res in reverse order *) 
let rec revaux (l: int list) (res: int list) = 

if l = [] then res 
else revaux (List.tl l) (List.hd l :: res);; 

val revaux : int list -> int list -> int list = <fun> 
 
# revaux [1; 2; 3] [4; 5; 6];; 
- : int list = [3; 2; 1; 4; 5; 6] 
 
# let rev (l: int list) = revaux l [];; 
val rev : int list -> int list = <fun> 



Tail recursion 
• It is usually fairly easy to rewrite a recursive function in tail-recursive style. 

– E.g., the usual factorial function is not tail recursive (because one multiplication 
remains to be done after the recursive call returns):  

 
# let rec fact (n:int) = 

if n = 0 then 1 
else n * fact(n-1);; 

 
• It can be transformed into a tail-recursive version by performing the 

multiplication before the recursive call and passing along a separate argument 
in which these multiplications “accumulate”:  
 
# let rec factaux (acc:int) (n:int) = 

if n = 0 then acc 
else factaux (acc*n) (n-1);; 
 

# let fact (n:int) = factaux 1 n;; 



Basic Pattern Matching 

Recursive functions on lists tend to have a standard shape:   
– test whether the list is empty,  and if it is not  
– do something involving the head element and the tail. 

 # let rec listSum (l:int list) = 
 if  l = [] then 0 
 else List.hd l + listSum (List.tl l);; 

 
OCaml provides a convenient pattern-matching construct that 
bundles the emptiness test and the extraction of the head and tail 
into a single syntactic form: 
 

# let rec listSum (l: int list) = 
match l with 
 [] -> 0 
|  x::y -> x + listSum y;; 

 



Basic Pattern Matching 

• Pattern matching can be used with types other than 
lists. For example, here it is used on integers: 

# let rec fact (n:int) = 
    match n with 
         0 -> 1 
       | _ -> n * fact(n-1);; 

here _ pattern is a wildcard that matches any value 



Complex Patterns 
• The basic elements (constants, variable binders, 

wildcards, [], ::, etc.) may be combined in arbitrarily 
complex ways in match expressions: 
# let silly  l = 
      match l with 
           [_;_;_]    ->    "three elements long" 
       | _::x::y::_::_::rest    -> 
 if x>y then "foo" else "bar" 
       | _ -> "dunno";; 
val silly : int list -> string = <fun> 
# silly [1;2;3];; 
- : string = "three elements long" 
# silly [1;2;3;4];; 
- : string = "dunno" 
# silly [1;2;3;4;5];; 
- : string = "bar" 



Type Inference 
• One pleasant feature of OCaml is a powerful type 

inference mechanism that allows the compiler to 
calculate the types of variables from the way in which 
they are used. 

• The compiler can tell that fact takes an integer argument 
because n is used as an argument to the integer * and - functions. 

# let rec fact n = 
       match n with 
 0  ->  1 
        |   _   -> n * fact(n-1);; 
val fact : int -> int = <fun> 



Type Inference 
Similarly:  

# let rec listSum l   = 
       match l with 
   []  ->  0 
       |     x::y  ->  x + listSum y;; 
val listSum : int list -> int = <fun> 



Polymorphism (first taste) 

• The ’a in the type of length, pronounced “alpha,” is a 
type variable standing for an arbitrary type. 

• The inferred type tells us that the function can take a 
list with elements of any type (i.e., a list with elements 
of type alpha, for any choice of alpha). 

# let rec length l  = 
      match l with 
            []       ->  0 
      |     _::y  ->  1 + length y;; 
val length  :  ’a list -> int = <fun> 



Tuples 
• Items connected by commas are “tuples.” (The 

enclosing parenthesis are optional.) 

# "age", 44;; 
- : string * int = "age", 44 
 
# "professor","age", 33;; 
- : string * string * int = "professor", "age", 33 
 
# ("children", ["bob";"ted";"alice"]);; 
- : string * string list =  "children", ["bob"; "ted"; "alice"] 
 
# let g (x,y) = x*y;; 
val g : int * int -> int = <fun> 

演示者
演示文稿备注
How many arguments does g take?



Tuples are not lists 
Do not confuse them! 

# let tuple = "cow", "dog", "sheep";; 
val tuple : string * string * string =  "cow", "dog", "sheep" 
 
# List.hd tuple;; 
Error: This expression has type string * string * string 
       but an expression was expected of type 'a list 

# let tup2 = 1, "cow";; 
val tup2 : int * string = 1, "cow" 
 
# let l2 = [1; "cow"];; 
Error: This expression has type string but an expression was 
expected of type  int 



Tuples and pattern matching 
• Tuples can be “deconstructed” by pattern matching: 

# let lastName name = 
       match  name with 
             (n,_,_)  ->  n;; 
 
# lastName (“Zhao", “Haiyan", “PKU");; 
- : string = “Zhao" 



Example: Finding words ** 
• Suppose we want to take a list of characters and return 

a list of lists of characters, where each element of the 
final list is a “word” from the original list. 

# split [’t’;’h’;’e’;’ ’;’b’;’r’;’o’;’w’;’n’; ’ ’;’d’;’o’;’g’];; 
- : char list list = [[’t’; ’h’; ’e’]; [’b’; ’r’; ’o’; ’w’; ’n’]; 
             [’d’; ’o’; ’g’]] 

(Character constants are written with single quotes.) 



An implementation of split 

• Note the use of both tuple patterns and nested patterns. The @ 
operator is shorthand for List.append. 

# let rec loop w l = 
       match l with 
 []  -> [w] 
       |  (’ ’::ls)  -> w :: (loop [] ls) 
       |  (c::ls)   -> loop (w @ [c]) ls;; 
val loop : char list  -> char list  -> char list list 
                   =  <fun> 
# let split l = loop [] l;; 
val split : char list -> char list list = <fun> 



Aside: Local function definitions 
• The loop function is completely local to split: there is no reason 

for anybody else to use it — or even for anybody else to be able 
to see it! It is good style in OCaml to write such definitions as 
local bindings: 

# let split l = 
       let rec loop w l = 
 match l with 
     []  -> [w] 
 | (’ ’::ls)  -> w :: (loop [] ls) 
 | (c::ls)  -> loop (w @ [c]) ls in  
       loop [] l;; 



Local function definitions 
• In general, any let definition that can appear at the top 

level 

# let  ...  ;; 
# e;;; 

# let ... in e;;; 

• can also appear in a let ... in  ...  form 



A Better Split ?  
Our  split  function worked fine for the example we tried it 
on.   But here are some other tests: 

# split  [’a’;’ ’;’ ’;’b’];; 
- : char list list = [[’a’]; []; [’b’]] 
 
# split [’a’; ’ ’];; 
- : char list list = [[’a’]; []] 

Could we refine split so that it would leave out these 
spurious empty lists in the result? 



 A Better Split 
• Sure.  First rewrite the pattern match a little (without 

changing its behavior) 

# let split l = 
       let rec loop w l = 
 match w, l with 
       _, [] -> [w] 
 | _, (’ ’::ls) -> w :: (loop [] ls) 
 | _, (c::ls) -> loop (w @ [c]) ls in 
       loop [] l;; 



 A Better Split 
• Then add a couple of clauses: 

# let better_split l = 
       let rec loop w l = 
 match w,l with 
     [],[] -> [] 
 | _,[] -> [w] 
 | [], (’ ’::ls) -> loop [] ls 
 | _, (’ ’::ls) -> w :: (loop [] ls) 
 | _, (c::ls) -> loop (w @ [c]) ls in 
       loop [] l;; 
 
# better_split [’a’;’b’;’ ’;’ ’;’c’;’ ’;’d’;’ ’];; 
- : char list list = [[’a’; ’b’]; [’c’]; [’d’]] 
# better_split [’a’;’ ’];; 
- : char list list = [[’a’]] 
# better_split [’ ’;’ ’];; 
- : char list list = [] 



Basic Exceptions 
OCaml’s exception mechanism is roughly similar to that found in, 
for example, Java. 
We begin by defining an exception: 

# let rec fact n = 
       if n<0 then raise Bad 
       else if n=0 then 1 
       else n * fact(n-1);; 
# fact (-3);; 
Exception: Bad. 

# exception Bad;; 

Now, encountering raise Bad will immediately terminate 
evaluation and return control to the top level: 



 (Not) catching exceptions 
Naturally,  exceptions can also be caught within a program 
(using the try ... with ... form), but let’s leave that for 
another day. 



 
 

Defining New Types of Data 



Predefined types 
We have seen a number of data types: 

int 
bool 
string 
char 
[x;y;z] lists 
(x,y,z) tuples 

 
Ocaml has a number of other built-in data types — in 
particular,  float, with operations like +., *., etc. 
One can also create completely new data types. 



The need for new types 
• The ability to construct new types is an essential part of 

most programming languages. 

• For example, suppose we are building a (very simple) 
graphics program that displays circles and squares. We 
can represent each of these with three real numbers... 



The need for new types 
• A circle is represented by the co-ordinates of its center 

and its radius. A square is represented by the co-ordinates 
of its bottom left corner and its width.  
– both shapes can  be represented  as elements of the type: 

float * float * float 
• two problems with using this  type to represent circles 

and squares.  
– a bit long and unwieldy, both to write and to read.  
– There is nothing to prevent us from mixing circles and squares  

since their types are identical 

# let areaOfSquare (_,_,d)  =  d *. d;; 

might accidentally apply the areaOfSquare function to a circle and 
get a nonsensical result. 



Data Types 
We can improve matters by defining square as a new type: 

 

This does two things: 
– creates a new type called square that is different from any 

other type in the system. 
– creates a constructor called Square (with a capital S) that can 

be used to create a square from three floats.  

# type square = Square of float * float * float;; 

# Square (1.1, 2.2, 3.3);; 
- : square = Square  (1.1, 2.2, 3.3) 



Taking data types apart 
We take types apart with (surprise, surprise...) pattern 
matching 

we can use constructors like Square both as functions 
and as patterns. 

# let areaOfSquare s = 
       match s with 
 Square(_, _, d)  ->  d *. d;; 
val areaOfSquare : square -> float  =  <fun> 
 
# let bottomLeftCoords  s = 
       match s with 
 Square(x, y, _)  -> (x, y);; 
val bottomLeftCoords : square -> float * float  =  <fun> 



Taking data types apart 
These functions can be written a little more concisely by 
combining the pattern matching with the function header: 

# let areaOfSquare (Square(_, _, d)) = d *. d;; 
# let bottomLeftCoords (Square(x, y, _)) = (x,y);; 



Variant types 
back to the idea of a graphics program, we obviously want to 
have several shapes on the screen at once. For this we’d  
probably want to keep a list of circles and squares, but such a 
list would be heterogenous.  How do we make such a list? 
Answer: Define a type that can be either a circle or a square. 
# type shape = Circle of float * float * float 
  | Square of float * float * float;; 

# Square (1.0, 2.0, 3.0);; 
- : shape = Square (1.0, 2.0, 3.0) 

Now both constructors Circle and Square create values of type 
shape. 

A type that can have more than one form is often called a 
variant  type. 



Pattern matching on variants 
We can also write functions that do the right thing on all 
forms of a variant type. Again we use pattern matching: 

# let area s = 
       match s with 
 Circle (_, _, r)   -> 3.14159 *. r *. r 
       |  Square (_, _, d)  -> d *. d;; 
 
# area (Circle (0.0, 0.0, 1.5));; 
- : float = 7.0685775 



 Variant types 
A heterogeneous list: 

# let l  =  [Circle (0.0, 0.0, 1.5); 
  Square (1.0, 2.0, 1.0); 
  Circle (2.0, 0.0, 1.5); 
  Circle (5.0, 0.0, 2.5)];; 
 
# area (List.hd l);; 
- : float = 7.0685775 



Data Type for Optional Values 
Suppose we are implementing a simple lookup function for 
a telephone directory. We want to give it a string and get 
back a number (say an integer), i.e, a function lookup whose 
type is: 

lookup: string -> directory -> int  
where directory is a (yet to be decided) type that we’ll use 
to represent the directory.  
However, this isn’t quite enough. What happens if a given 
string isn’t in the directory? What should lookup return? 
There are several ways to deal with this issue. One is to raise 
an exception. Another uses the following data type: 

# type optional_int = Absent | Present of int;; 



Data Type for Optional Values 
To see how this type is used, let’s represent our directory 
as a list of pairs: 

# let directory = [("Joe", 1234); ("Martha", 5672); 
                           ("Jane", 3456); ("Ed", 7623)];; 
# let rec lookup s l = 
       match l with 
            []   -> Absent 
       | (k,i)::t   -> if k = s then Present(i) 
  else lookup s t;; 
 

# lookup "Jane" directory;; 
- : optional_int = Present 3456 

 

# lookup "Karen" directory;; 
- : optional_int = Absent 



Built-in options 
options are often useful in functional programming, 
OCaml provides a built-in type t option for each type t. 
Its constructors are None (corresponding to Absent) and 
Some (for Present) 

# let rec lookup s l = 
       match l with 
 []  -> None 
         (k,i)::t  -> if k = s then Some(i) 
             else lookup s t;; 
 
# lookup "Jane" directory;; 
- : optional_int = Some 3456 



Enumerations 
The option type has one variant, None, that is a 
“constant” constructor carrying no data values with it. 
Data types in which all the variants are constants can 
actually be quite useful... 

# type color = Red | Yellow | Green;; 
# let next c = 
match c with Green -> Yellow | Yellow -> Red 
| Red -> Green; 

# type color = Red | Yellow | Green;; 
# let next c = 
      match c with Green -> Yellow | Yellow -> Red | Red -> Green; 
 

# type day = Sunday | Monday | Tuesday | Wednesday 
  | Thursday | Friday | Saturday;; 
# let weekend d = 
      match d with 
           Saturday -> true 
       |  Sunday -> true 
       |  _ -> false;; 



A Boolean Data Type 
A simple data type can be used to replace the built-in 
booleans, by using the constant constructors True and 
False to represent true and false . Here use different 
names as needed to avoid confusion between our 
booleans and the built-in ones: 

# type color = Red | Yellow | Green;; 
# let next c = 
match c with Green -> Yellow | Yellow -> Red 
| Red -> Green; 

# type myBool = False | True;; 
# let myNot b =   match b with False -> True | True -> False;; 
# let myAnd b1 b2 = 
        match (b1,b2) with 
              (True, True) -> True 
        |   (True, False) -> False 
        |   (False, True) -> False 
        |   (False, False) -> False;; 

Note that the behavior of myAnd is not quite the same as the 
built-in &&! 



Recursive Types 
Consider the tiny language of arithmetic expressions 
defined by the following grammar: 

exp    ::=    number 
        ( exp + exp ) 
  ( exp - exp ) 
  ( exp * exp ) 



Recursive Types 
This grammar can be translated directly into a datatype 
definition: 

type  ast  = 
            ANum of int 
        |  APlus of  ast * ast 
        |  AMinus of ast * ast 
        |  ATimes of ast * ast ;; 

Notes: 
– This datatype (like the original grammar) is recursive. 
– The type ast represents abstract syntax trees, which capture 

the underlying tree structure of expressions, suppressing 
surface details such as parentheses 



An evaluator for expressions 
  write an evaluator for these expressions：  

val eval : ast -> int = <fun> 
 
# eval (ATimes (APlus (ANum 12, ANum 340), ANum 5));; 
- : int = 1760 



An evaluator for expressions 
The solution uses a recursive function plus a pattern 
match. 

let rec eval e = 
 match e with 
  ANum I -> i 
 |  APlus (e1,e2) -> eval e1 + eval e2 
 |  AMinus (e1,e2) -> eval e1 - eval e2 
 |  ATimes (e1,e2) -> eval e1 * eval e2;; 



 
 

Polymorphism 



Polymorphism 
We encountered the concept of polymorphism very 
briefly. Let’s look at it now in a bit more detail 

# let rec last l = 
       match l with 
           [] -> raise Bad 
       |  [x] -> x 
       |  _::y -> last y 

What type should we give to the parameter l? 

It doesn’t matter what type of objects are stored in the list: we 
could make it int list or bool list. However, if we chose one of 
these types, would not be able to apply last to the other. 



Polymorphism 
Instead, we can give l the type ’a list, standing for an arbitrary type. 
When we use the function, Ocaml will figure out what type we need. 
 
This version of last is said to be polymorphic, because it can be applied to 
many different types of arguments. (“Poly” = many, “morph” = shape.) 
In other words, 
                  last : ’a list -> ’a 
can be read, “last is a function that takes a list of elements of 
any type alpha and returns an element of alpha.” 
 
Here, the type of the elements of l is ’a. This is a type variable, 
which can instantiated each time we apply last, by replacing ’a with any 
type that we like. 
 



A polymorphic append 

# let rec append (l1: ’a list) (l2: ’a list) = 
       if l1 = [] then l2 
       else List.hd l1 :: append (List.tl l1) l2;; 
val append : ’a list -> ’a list -> ’a list = <fun> 
 
# append [4; 3; 2] [6; 6; 7];; 
- : int list = [4; 3; 2; 6; 6; 7] 
 
# append ["cat"; "in"] ["the"; "hat"];; 
- : string list = ["cat"; "in"; "the"; "hat"]  



 
 

Programming With Functions 



Functions as Data 
Functions in OCaml are first class — they have the same 
rights and privileges as values of any other types. E.g., 
they can be 

– passed as arguments to other functions 
– returned as results from other functions 
– stored in data structures such as tuples and lists 
– etc. 



map: “apply-to-each” 
OCaml has a predefined function List.map that takes a 
function f and a list l and produces another list by applying f to 
each element of l.  
We’ll soon see how to define List.map, but first let’s look at 
some examples. 

# List.map square [1; 3; 5; 9; 2; 21];; 
- : int list = [1; 9; 25; 81; 4; 441] 
 

# List.map not [false; false; true];; 
- : bool list = [true; true; false] 

Note that List.map is polymorphic: it works for lists of 
integers, strings, booleans, etc. 



More on map 
An interesting feature of List.map is its first argument is 
itself a function. For this reason, we call List.map a 
higher-order function. 
 

Natural uses for higher-order functions arise frequently in 
programming. One of OCaml’s strengths is that it makes 
higher-order functions very easy to work with. 
 

In other languages such as Java, higher-order functions 
can be (and often are) simulated using objects. 



filter 
Another useful higher-order function is List.filter. 
When applied to a list l and a boolean function p, it builds 
a list of the elements from l for which p returns true. 
# let rec even (n:int)  = 
      if n=0 then true else if n=1 then false 
      else if n<0 then even (-n)  else even (n-2);; 
val even : int -> bool = <fun> 
 

# List.filter even [1; 2; 3; 4; 5; 6; 7; 8; 9];; 
- : int list = [2; 4; 6; 8] 
 

# List.filter palindrome  [[1]; [1; 2; 3]; [1; 2; 1]; []];; 
- : int list list = [[1]; [1; 2; 1]; []] 



Defining map 
List.map comes predefined in the OCaml system, but 
there is othing magic about it—we can easily define our 
own map function with the same behavior. 
let rec map (f: ’a->’b) (l: ’a list) = 
        if l = [] then [] 
        else f (List.hd l) :: map f (List.tl l) 
val map : (’a -> ’b) -> ’a list -> ’b list = <fun> 

# map String.length ["The"; "quick"; "brown"; "fox"];; 
- : int list = [3; 5; 5; 3] 

The type of map is probably even more polymorphic than you 
expected! The list that it returns can actually be of a different 
type from its argument: 



Defining filter 
Similarly, we can define our own filter that behaves the 
same as List.filter. 

# let rec filter (p: ’a->bool) (l: ’a list) = 
        if l = [] then  [] 
        else if p (List.hd l) then 
               List.hd l :: filter p (List.tl l) 
        else 
               filter p (List.tl l) 
val filter : (’a -> bool) -> ’a list -> ’a list  = <fun>> 



Multi-parameter functions 

# let foo x y = x + y;; 
val foo : int -> int -> int = <fun> 
 
# let bar (x,y) = x + y;; 
val bar : int * int -> int = <fun> 

We have seen two ways of writing functions with multiple 
parameters: 



Another useful higher-order function: fold 

In general: 
                         f [a1; ...; an] b 
is 
                        f a1 (f a2 (... (f an b) ...)). 

# let rec fold f l acc = 
        match l with 
              [] -> acc 
         |   a::l -> f a (fold f l acc);; 
val fold : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b 

# fold (fun a b -> a + b) [1; 3; 5; 100]  0;; 
- : int = 109 



Using fold 
Most of the list-processing functions we have seen can be 
defined compactly in terms of fold: 

# let listSum l = 
        fold (fun a b -> a + b) l 0;; 
val listSum : int list -> int = <fun> 
 

# let length l = 
        fold (fun a b -> b + 1) l 0;; 
val length : ’a list -> int = <fun> 
 

# let filter p l = 
       fold (fun a b -> if p a then (a::b) else b) l [];; 



Using fold 

# (* List of numbers from m to n, as before *) 
  let rec fromTo m n = 
      if n < m then [] 
      else m :: fromTo (m+1) n;; 
val fromTo : int -> int -> int list = <fun> 
 
# let fact n = 
       fold (fun a b -> a * b) (fromTo 1 n) 1;; 
val fact : int -> int = <fun> 



Forms of fold 
OCaml List module actually provides two  folding 
functions 

The one we’re calling fold is List.fold_right. 
List.fold_left performs the same basic operation but 
takes its arguments in a different order. 

List.fold_left 
        : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a 
List.fold_right 
        : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b 



The unit type 
OCaml provides another built-in type called unit, with just 
one inhabitant, written (). 

# let x = ();; 
val x : unit = () 
 

# let f () = 23 + 34;; 
val f : unit -> int = <fun> 
 

# f ();; 
- : int = 57 

Why is this useful? 



Use of unit 
A function from unit to ’a is a delayed computation of 
type ’a.   When we define the function... 

...  the long and complex calculation is just boxed up in a 
closure that we can save for later (by binding it to a 
variable, e.g.). When we actually need the result, we apply 
f to () and the calculation actually happens: 

# let f () = <long and complex calculation>;; 
val f : unit -> int = <fun> 

# f ();; 
- : int = 57 



Thunks 
A function accepting a unit argument is often called a 
thunk. 
Thunks are widely used in functional programming. 

Suppose we are writing a function where we need to 
make sure that some “finalization code” gets executed, 
even if an exception is raised. 



Thunks 
# let read file = 
      let chan = open_in file in 
      let finalize () = close_in chan in 
      try 
 let nbytes = in_channel_length chan in 
 let string = String.create nbytes in 
 really_input chan string 0 nbytes; 
 finalize (); 
 string 
         with exn -> 
 (* finalize channel *) 
  finalize (); 
 (* re-raise exception *) 
 raise exn;; 

演示者
演示文稿备注
We can avoid duplicating the finalization code by wrapping it in athunk:The try...with... form is OCaml’s syntax for handlingexceptions.)



Thunks 

# let read file = 
      let chan = open_in file in 
      try 
 let nbytes = in_channel_length chan in 
 let string = String.create nbytes in 
 really_input chan string 0 nbytes; 
 close_in chan; 
 string 
         with exn -> 
 (* finalize channel *) 
 close_in chan; 
 (* re-raise exception *) 
 raise exn;; 



Thunks: go further... 
# let unwind_protect body finalize = 
    try 
 let res = body() in 
 finalize(); 
 res 
     with exn -> 
 finalize(); 
 raise exn;; 
# let read file = 
      let chan = open_in file in 
      unwind_protect 
 (fun () -> 
  let nbytes = in_channel_length chan in 
  let string = String.create nbytes in 
  really_input chan string 0 nbytes; 
  string) 
 (fun () -> close_in chan);; 



Reference Cell 
# let fact n =  
      let result = ref 1 in  
           for i = 2 to n do  
 result := i * !result  
           done;  
      !result;; 
val fact : int -> int = <fun>  
 

# fact 5;; 
 - : int = 120  

updatable memory cells, called references: ref  init returns a new 
cell with initial contents init, !cell returns the current contents of 
cell, and cell := v writes the value v into cell. 



The rest of OCaml 
• We’ve seen only a small part of the OCaml 

language. Some other highlights: 
– advanced module system 
– imperative features (ref cells, arrays, etc.); the 

“mostly functional” programming style 

• objects and classes 



Closing comments on OCaml 
• Some common strong points of OCaml, Java, C#, etc. 

– strong, static typing (no core dumps!) 
– garbage collection (no manual memory management!!) 

• Some advantages of Ocaml compared to Java, etc. 
– excellent implementation (fast, portable, etc.) 
– powerful module system 
– streamlined support for higher-order programming 
– sophisticated pattern matching (no “visitor patterns”) 
– parametric polymorphism (Java and C# are getting this “soon”) 

• Some disadvantages: 
– smaller developer community 
– smaller collection of libraries 
– object system somewhat clunky 



Utilities  
in 

OCaml System   



Where are we going? 
• Overall goal: we want to turn strings of 

characters – code –into computer instructions   
• Easiest to break this down into phases:  

– First, turn strings into abstract syntax trees (ASTs) – 
this is parsing  

– Next, turn abstract syntax trees into executable 
instructions – compiling or interpreting 

 



Lexing and Parsing 
• Strings are converted into ASTs in two phases: 

Lexing  Convert strings (streams of characters) into lists 
(or streams) of tokens,, representing words in 
the language (lexical analysis) 

Parsing Convert lists of tokens into abstract syntax 
trees (syntactic analysis) 

 



Lexing 
• With lexing, we break sequences of characters into 

different syntactic categories, called tokens.   
• As an example, we could break: 

asd 123  jkl  3.14 
 
   into this: 

         [String ‘‘asd’’, Int 123; String ‘‘jkl’’; Float 3.14] 

 
  

 



Lexing Strategy 
• Our strategy will be to leverage regular expressions and 

finite automata to recognize tokens: 
– each syntactic category will be described by a 

regular expression (with some extended syntax) 
– words will be recognized by an encoding of a 

corresponding finite state machine 
 

 
• However, this still leaves us with a problem. How do we 

pull multiple words out of a string, instead of just 
recognizing a single word? 
 



Lexing : Multiple tokens 
• To solve this, we will modify the behavior of the DFA. 

– if we find a character where there is no transition from the 
current state, stop processing the string 

– if we are in an accepting state, return the token corresponding 
to what we found as well as the remainder of the string  

– now, use iterator or recursion to keep pulling out more tokens 
– if we were not in an accepting state, fail – invalid syntax 



Lexing Options 
• We could write a lexer by writing regular expressions, 

and then translating these by hand into a DFA.  
– sounds tedious and repetitive – perfect for a computer!  

• Can we write a program that takes regular expressions 
and generates automata for us? 
 

• Someone already did – Lex!  
– GNU version of this is flex 
– OCaml version of this is ocamllex 

 



How does it work? 
• We need a few core items to get this working: 

– Some way to identify the input string – we’ll call this the 
lexing buffer 

– A set of regular expressions that correspond to tokens in our 
language 

– A corresponding set of actions to take when tokens are 
matched 

 
• The lexer can then take the regular expressions to build 

state machines, which are then used to process the lexing 
buffer.  
– If we reach an accept state and can take no further transitions, 

we can apply the actions. 



Syntax of lexer definitions 
(*head sections*)  
{ header }  
(*definition sections*)  
let ident = regexp …  
(*rule sections*)  
rule entrypoint [arg1… argn] =  
 parse regexp { action }  
 | …  
 | regexp { action }  
and entrypoint [arg1… argn] =  
 parse …  
and …  
(*rule sections*)  
{ trailer } 
 

 
Comments are delimited by (* and *), as in OCaml.  
 
The parse keyword can be replaced by the shortest keyword 



Entry points 
• The names of the entry points must be valid identifiers 

for OCaml values (starting with a lowercase letter). 
• Each entry point becomes an OCaml function that takes 

n+1 arguments 
– arguments arg1… argn must be valid identifiers for Ocaml 
– the extra implicit last argument being of type Lexing.lexbuf, 

Characters are read from the Lexing.lexbuf argument and 
matched against the regular expressions provided in the rule, 
until a prefix of the input matches one of the rule.  

– The corresponding action is then evaluated and returned as 
the result of the function. 



Regular Expressions in ocamllex 
• The regular expression format is similar to what we’ve seen so 

far, but still slightly different. 
– ‘ regular-char ∣ escape-sequence ’  A character constant, with the 

same syntax as OCaml character constants. Match the denoted character. 
– _    (underscore)   Match any character. 
– eof    Match the end of the lexer input. 
– " { string-character } “ A string constant, with the same syntax as OCaml 

string constants. Match the corresponding sequence of characters. 
– [ character-set ]  Match any single character belonging to the given 

character set. Valid character sets are: single character constants ' c '; 
ranges of characters ' c1 ' - ' c2 ' (all characters between c1 and c2, 
inclusive); and the union of two or more character sets, denoted by 
concatenation. 

– [ ^ character-set ]  Match any single character not belonging to the given 
character set. 

http://caml.inria.fr/pub/docs/manual-ocaml-400/lex.html#escape-sequence
http://caml.inria.fr/pub/docs/manual-ocaml-400/lex.html#string-character


Regular Expressions in ocamllex 
– regexp1 #  regexp2 (difference of character sets) Regular 

expressions regexp1 and regexp2 must be character sets 
defined with [… ] (or a a single character expression or 
underscore _). Match the difference of the two specified 
character sets. 

– regexp *(repetition)    Match the concatenation of zero or 
more strings that match regexp. 

– regexp +(strict repetition)  Match the concatenation of one or 
more strings that match regexp. 

– regexp ?(option)   Match the empty string, or a string 
matching regexp. 

http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp


Regular Expressions in ocamllex 
– regexp1 |  regexp2(alternative)  Match any string that 

matches regexp1 or regexp2 

– regexp1  regexp2(concatenation)  Match the concatenation of 
two strings, the first matching regexp1, the second matching 
regexp2. 

– ( regexp ) Match the same strings as regexp. 
– ident   Reference the regular expression bound to ident by an 

earlier let ident =  regexp definition. 
– regexp as  ident     Bind the substring matched by regexp to 

identifier ident.  

http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/lex.html#ident
http://caml.inria.fr/pub/docs/manual-ocaml-400/lex.html#ident
http://caml.inria.fr/pub/docs/manual-ocaml-400/lex.html#ident
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/lex.html#ident
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/lex.html#ident


Actions 
Can be arbitrary OCaml expressions. They are evaluated in a context 
where the identifiers defined by using the as construct are bound to 
subparts of the matched string.  
Additionally, lexbuf is bound to the current lexer buffer. Some typical uses 
for lexbuf: 

– Lexing.lexeme lexbuf  Return the matched string. 
– Lexing.lexeme_char lexbuf n  Return the nth character in the matched 

string. The first character corresponds to n = 0. 
– Lexing.lexeme_start lexbuf  Return the absolute position in the input 

text of the beginning of the matched string (i.e. the offset of the first 
character of the matched string).   The first character read from the 
input text has offset 0. 

– Lexing.lexeme_end lexbuf  Return the absolute position in the input 
text of the end of the matched string (i.e. the offset of the first character 
after the matched string).  

– entrypoint [exp1… expn] lexbuf  Recursively call the lexer on the 
given entry point 



Header and trailer 
• Can be arbitrary OCaml text enclosed in curly 

braces.  
– Either or both can be omitted. If present, the header 

text is copied as is at the beginning of the output file 
and the trailer text at the end.  

– Typically, the header section contains the open 
directives required by the actions, and possibly some 
auxiliary functions used in the actions. 



Sample Lexer 

1   rule main = parse 
2      |  [’0’-’9’]+   { print_string "Int\n"} 
3      |  [’0’-’9’]+’.’[’0’-’9’]+  { print_string "Float\n"} 
4      |  [’a’-’z’]+  { print_string "String\n"} 
5      |  _  { main lexbuf } 
6   { 
7      let newlexbuf = (Lexing.from_channel stdin) in 
8           print_string "Ready to lex.\n"; 
9     main newlexbuf 
10 } 



Mechanics of Using ocamllex 
• Lexer definitions using ocamllex are written in a file 

with a .mll extension.  
– including the regular expressions, with associated actions for 

each. 
 

• OCaml code for the lexer is generated with  
  ocamllex lexer.mll  

    This generates the code for the lexer in file file.ml 
– This file defines one lexing function per entry point in the 

lexer definition 

 



Options for ocamllex 

• The following command-line options are recognized by 
ocamllex. 
– ml   Output code that does not use OCaml’s built-in automata 

interpreter. Instead, the automaton is encoded by OCaml functions. This 
option mainly is useful for debugging ocamllex, using it for production 
lexers is not recommended. 

– o output-file    Specify the name of the output file produced by ocamllex. 
The default is the input file name with its extension replaced by .ml. 

– q   Quiet mode. ocamllex normally outputs informational messages to 
standard output. They are suppressed if option -q is used. 

– v or –version   Print version string and exit. 
– Vnum   Print short version number and exit. 
– help or – help    Display a short usage summary and exit.  



Parsing  
• Convert lists of tokens into abstract syntax trees 

 
• Someone already did – Yacc!  

– GNU:  bison  
– Ocaml: ocamlyacc 

 



Yacc 
• provides a general tool for describing the input to a 

computer program.  
– The Yacc user specifies the structures of his input, 

together with code to be invoked as each such 
structure is recognized.  

– Yacc turns such a specification into a subroutine that 
handles the input process; frequently, it is 
convenient and appropriate to have most of the flow 
of control in the user's application handled by this 
subroutine. 

 



ocamlyacc  Command 
• Produces a parser from a context-free grammar 

specification with attached semantic actions, in the style 
of yacc.  

• Executing  
ocamlyacc options grammar.mly  

produces OCaml code for a parser in the file 
grammar.ml, and its interface in file grammar.mli. 
– The generated module defines one parsing function per entry 

point in the grammar. These functions have the same names as 
the entry points.  

– Parsing functions take as arguments a lexical analyzer (a 
function from lexer buffers to tokens) and a lexer buffer, and 
return the semantic attribute of the corresponding entry point.  

 



Options for ocamlyacc 
-bprefix     Name the output files prefix.ml, prefix.mli, 

prefix.output, instead of the default naming 
convention. 

-q        This option has no effect. 
-v        Generate a description of the parsing tables and a report 

on conflicts resulting from ambiguities in the grammar. 
The description is put in file grammar.output. 

-version       Print version string and exit. 
-vnum          Print short version number and exit. 
-            Read the grammar specification from standard input. The 

default output file names are stdin.ml and stdin.mli. 
-- file   Process file as the grammar specification, even if its name 

starts with a dash (-) character. This option must be the 
last on the command line. 



Syntax of grammar definitions 
%{ 
  header  
%}  
 declarations  
%%  
 rules  
%%  
 trailer  
Comments are enclosed between /* and */ (as in C) in the 
“declarations” and “rules” sections, and between (* and *) 
(as in OCaml) in the “header” and “trailer” sections. 

 



header and trailer 
• OCaml code that is copied as is into file 

grammar.ml. 
–  Both sections are optional.  
– The header goes at the beginning of the output file; 

it usually contains open directives and auxiliary 
functions required by the semantic actions of the 
rules.  

– The trailer goes at the end of the output file. 



Declarations 
given one per line. They all start with a % sign. 

%token  constr …  constr   
%token < typexpr >  constr …   

Declare the given symbols constr …  constr as tokens (terminal symbols).  
%start  symbol …  symbol   

 Declare the given symbols as entry points for the grammar. For each 
entry point, a parsing function with the same name is defined in the 
output module 

%type < typexpr >  symbol …  symbol 
Specify the type of the semantic attributes for the given symbols. This is 
mandatory for start symbols only 

%left symbol …  symbol 
%right symbol …  symbol 
%nonassoc symbol …  symbol 

http://caml.inria.fr/pub/docs/manual-ocaml-400/manual011.html#constr
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual011.html#constr
http://caml.inria.fr/pub/docs/manual-ocaml-400/types.html#typexpr
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual011.html#constr
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual011.html#constr
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual011.html#constr
http://caml.inria.fr/pub/docs/manual-ocaml-400/types.html#typexpr


Rules 
The syntax for rules is as usual:  
nonterminal :  
 symbol … symbol { semantic-action }  
        | …  
        | symbol … symbol { semantic-action }  
;  
Rules can also contain the %prec symbol directive in the right-hand 
side part, to override the default precedence and associativity of 
the rule with the precedence and associativity of the given symbol. 
Semantic actions are arbitrary OCaml expressions, that are 
evaluated to produce the semantic attribute attached to the 
defined nonterminal.  
The semantic actions can access the semantic attributes of the 
symbols in the right-hand side of the rule with the $ notation: 

–  $1 is the attribute for the first (leftmost) symbol, $2 is the attribute for 
the second symbol, etc. 

 



Utilities  
in Environment 



make 
make is one critical utility in the Unix/Linux-like  
environment 
• 自动管理、检查文件之间的依赖关系 
• 自动判断哪些文件要重新编译, 调用外部程序
进行处理 
– 根据文件的修改时间 

• 常用于编译源文件生成目标文件, 将目标文件
链接成可执行文件或库 



makefile 
• 用文件 ” makefile” 或 ” Makefile” 描述依赖和
动作, 动作由shell 执行 

• 命令make解释”makefile” 



Makefile for hello 

$make 
gcc hello.c –o hello 

hello: hello.c 
 gcc hello.c -o hello 

e.g., GNU make 
 



目标和依赖 

makefile 由如下的一系列规则组成 

target1 target2  target3 :  prerequisite1, prerequisite2 
command1 
command2 



目标和依赖说明 
• 目标(target): 要做的事情, 要生成的文件 

• 倚赖(prerequisite): 在生成目标前, 其所有倚赖
必须存在 

• 命令(command): 根据依赖生成目标的shell 命令. 
命令前必须是缩进(tab) 

• makefile 中的第一个规则称为缺省目标(goal) 



工作过程 
• 如果在命令行给出了目标, 则make 找到该目
标的规则; 否则执行缺省目标 

• 对于每个规则, 首先查看所有的依赖和目标 
– 若某个依赖有规则, 则首先处理该依赖的规则 
– 若某个依赖的时间比目标新, 则执行命令更新目标 
– 命令由shell 执行, 若执行错误, 则中止处理 



规则 
• 显式规则(explicit rule): makefile 中显式声明的规则, 
如 vpath.o variable.o: make.h config.h dep.h 

• 隐式规则(implicit rule): make 内置的模式规则或后缀
规则 
– 在GNU make 中, 后缀规则可被模式规则代替 

• 模式规则(pattern rule): 用通配符取代显式的
文件名, 跟Bourne sh 相同, 如 

 ~ * ? [...] [^...] 
 



变量 

在makefile 中可以定义变量: Name = Value 
随后通过$(Name) 或${Name} 访问 
make 的自动变量 

$@ 目标文件名 

$% 档案文件(库) 的成员 

$< 第一个依赖文件的文件名 

$? 所有比目标文件新的倚赖文件名列表, 以空格分隔 

$^ 所有依赖文件名列表, 以空格分隔 

$+ 和$^ 类似, 包含重复文件名 

$* 目标文件名去除后缀后的部分 



An Implementation  
for Arithmetic Expression 

 
Demo   
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