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Mutability 
So far, what we discussed does not include computational 
effects (also known as side effects) .  In particular, 
whenever we defined function, we never changed 
variables or data.  Rather, we always computed new data.   

– For instance, the operations to insert an item into the data 
structure didn't effect the old copy of the data 
structure.  Instead, we always built a new data structure with 
the item appropriately inserted.   

– For the most part, programming in a functional style (i.e., 
without side effects) is a "good thing" because it's easier to 
reason locally about the behavior of the program.  



Mutability 
• In most programming languages, variables are mutable — 

i.e., a variable provides both 
– a name that refers to a previously calculated value, and 
– the possibility of overwriting this value with another (which will 

be referred to by the same name) 
• In some languages (e.g., OCaml), these features are 

separate: 
– variables are only for naming — the binding between a variable 

and its value is immutable 
–  introduce a new class of mutable values (called reference cells or 

references) 
– at any given moment, a reference holds a value (and can be 

dereferenced to obtain this value) 
– a new value may be assigned to a reference 

 



Mutability 
Writing values into memory locations is the fundamental 
mechanism of imperative languages such as Pascal or C. 

Mutable structures are required to implement many 
efficient  algorithms. They are also very convenient to 
represent the current state of a state machine. 
 

 



Basic Examples 
r = ref 5 
 

!r 
r := 7 
 

(r:=succ(!r); !r) 
(r:=succ(!r); r:=succ(!r); r:=succ(!r);  r:=succ(!r); !r) 
 

i.e.,  

((((r:=succ(!r); r:=succ(!r)); r:=succ(!r));  :=succ(!r)); !r) 



Reference 
Basic operations:  

– allocation :    ref (operator)  
– dereferencing :  !  
– assignment:   := 
 

Is there any difference between?:  
5 + 8;  
r: =7; 
(r:=succ(!r); !r) 

 



Aliasing 
A value of type ref T is a pointer to a cell holding a value 
of type T. 

5 

r =  

If this value is “copied” by assigning it to another variable, 
the cell pointed to is not copied.       ( r and s are aliases) 

5 

r =  s =  

So we can change r by assigning to s: 
       (s:=10; !r) 



Aliasing all around us 
Reference cells are not the only language feature that 
introduces the possibility of aliasing. 

– arrays 
– communication channels 
– I/O devices (disks, etc.) 



The difficulties of aliasing 
The possibility of aliasing invalidates all sorts of useful forms 
of reasoning about programs, both by programmers... 
  e.g.,   function  
 𝜆𝜆:𝑅𝑅𝑅 𝑁𝑁𝑁. 𝜆𝜆:𝑅𝑅𝑅 𝑁𝑁𝑁.   (𝜆 ≔ 2;  𝜆 ≔ 3; ! 𝜆) 
   always returns 2 unless 𝜆 and s are aliases. 
...and by compilers: 

Code motion out of loops, common subexpression elimination, 
allocation of variables to registers, and detection of uninitialized 
variables all depend upon the compiler knowing which objects a 
load or a store operation could reference. 

High-performance compilers spend significant energy on 
alias analysis to try to establish when different variables 
cannot possibly refer to the same storage. 



The benefits of aliasing 
The problems of aliasing have led some language designers 
simply to disallow it (e.g., Haskell). 
But there are good reasons why most languages do provide 
constructs involving aliasing: 

– efficiency (e.g., arrays) 
– “action at a distance”  (e.g., symbol tables) 
– shared resources (e.g., locks) in concurrent systems 
– etc. 



Example 
𝑐 = 𝜆𝑅𝑅 0 
incc = 𝜆𝜆:𝑈𝑈𝑈𝑁. (𝑐 ≔ 𝜆𝑠𝑐𝑐 ! 𝑐 ; ! 𝑐) 
decc = 𝜆𝜆:𝑈𝑈𝑈𝑁. (𝑐 ≔ 𝑝𝜆𝑅𝑝 ! 𝑐 ; ! 𝑐) 
incc 𝑠𝑈𝑈𝑁 
𝑝𝑅𝑐𝑐 𝑠𝑈𝑈𝑁 
o = {i = 𝑈𝑈𝑐𝑐,𝑝 = 𝑝𝑅𝑐𝑐} 

𝑙𝑅𝑁 𝑈𝑅𝑛𝑐𝑛𝑠𝑈𝑁𝑅𝜆 =o 
   𝜆.𝑈𝑈𝑈𝑈 .     
 𝑙𝑅𝑁 𝑐 =  𝜆𝑅𝑅 0 𝑈𝑈  
 let incc = 𝜆𝜆:𝑈𝑈𝑈𝑁. (𝑐 ≔ 𝜆𝑠𝑐𝑐 ! 𝑐 ; ! 𝑐) in  
 let decc = 𝜆𝜆:𝑈𝑈𝑈𝑁. 𝑐 ≔ 𝑝𝜆𝑅𝑝 ! 𝑐 ; ! 𝑐  
 let o = {i = in𝑐𝑐,𝑝 = 𝑝𝑅𝑐𝑐} in  
 o 
 



Syntax  

   ... plus other familiar types, in examples. 



Typing rules 



Example 



Evaluation  
What is the value of the expression ref 0 ? 
Crucial observation: evaluating ref 0 must do something ? 
Otherwise, 
 r = ref 0 
 s = ref 0  
and  
 r = ref 0 
 s = r 
would behave the same. 
 
Specifically, evaluating ref 0 should allocate some storage 
and yield a reference (or pointer) to that storage.  

So what is a reference? 



The store  
A reference names a location in the store (also known as 
the heap or just the memory). 
 
What is the store?  

– Concretely: An array of 8-bit bytes, indexed by 32-bit integers. 
– More abstractly: an array of values. 
– Even more abstractly: a partial function from locations to 

values. 



Locations 
Syntax of values: 

... and since all values are terms... 



Syntax of Terms 



Aside 
Does this mean we are going to allow programmers to 
write explicit locations in their programs?? 

No:  This is just a modeling trick.   We are enriching the 
“source language” to include some run-time structures, so 
that we can continue to formalize evaluation as a relation 
between source terms. 

Aside: If we formalize evaluation in the big-step style, then 
we can add locations to the set of values (results of 
evaluation) without adding them to the set of terms. 



Evaluation 
The result of evaluating a term now depends on the store 
in which it is evaluated. Moreover, the result of evaluating 
a term is not just a value — we must also keep track of 
the changes that get made to the store. 
i.e., the evaluation relation should now map a term and a 
store to a reduced term and a new store. 

We use the metavariable 𝜇 to range over stores. 

  t |𝜇  →   t′ | 𝜇𝜇  



Evaluation 
An assignment    𝑁1 ≔  𝑁2  first evaluates 𝑁1  and 𝑁2 until 
they become values... 

... and then returns unit and updates the store: 



Evaluation 
A term of the form  ref t1  first evaluates inside  t1  until it 
becomes a value... 

... and then chooses (allocates) a fresh location 𝑙, augments  
the store with a binding from 𝑙 to v1 , and returns 𝑙 : 



Evaluation 
A term !t1 first evaluates in t1 until it becomes a value... 

... and then looks up this value (which must be a location, 
if the original term was well typed) and returns its  
contents in the current store 



Evaluation 
Evaluation rules for function abstraction and application 
are augmented with stores, but don’t do anything with 
them directly. 



Aside 
Garbage Collection 

Note that we are not modeling garbage collection — 
the store just grows without bound. 

 
Pointer Arithmetic 

We can’t do any! 



Store Typings 



Typing Locations 
Question:  What is the type of a location? 
 

Answer:  It depends on the store! 

e.g., in the store  (𝑙1 ⟼unit, 𝑙2 ⟼unit) , the term ! 𝑙2  has 
type Unit. 

 

But in the store (𝑙1 ⟼unit, 𝑙2 ⟼ λx: Unit. x),  the term 
! 𝑙2  has type Unit → Unit . 
 
 



Typing Locations — first try 
Roughly: 

More precisely: 

I.e., typing is now a four-place relation (between contexts, 
stores, terms, and types). 



Problem 
However, this rule is not completely satisfactory. For one 
thing, it can make typing derivations very large! 
e.g., if 

then how big is the typing derivation for ! 𝑙5? 



Problem 
But wait...    it gets worse.   Suppose  

how big is the typing derivation for ! 𝑙2? 



Store Typings 
Observation: The typing rules we have chosen for 
references guarantee that a given location in the store is 
always used to hold values of the same type. 

These intended types can be collected into a store 
typing — a partial function from locations to types. 



Store Typings 
E.g., for 
 
 
 
 
A reasonable store typing would be 
 
 
 
 



Store Typings 
Now, suppose we are given a store typing  ∑ describing 
the store 𝜇 in which we intend to evaluate some term t. 
Then we can use ∑ to look up the types of locations in t 
instead of calculating them from the values in 𝜇. 

i.e., typing is now a four-place relation contexts, store 
typings, terms, and types. 



Final typing rules 



Store Typings 
Question: Where do these store typings come from? 
 

Answer: When we first typecheck a program, there will be 
no explicit locations, so we can use an empty store typing. 
 

So, when a new location is created during evaluation, 

we can observe the type of v1 and extend the “current 
store typing” appropriately. 



Safety 



Preservation 
First attempt: just add stores and store typings in the 
appropriate places. 

Theorem(?):  if Γ | Σ ⊢ t: T  and if t 𝜇 ⟶ t′ 𝜇′ , then  
Γ | Σ ⊢ t𝜇: T  
Right??   Wrong! 

 Why is this wrong?  
 
Because Σ and 𝜇 here are not constrained to have 
anything to do with each other! 



Preservation 
A store 𝜇 is said to be well typed with respect to a typing 
context Γ and a store typing Σ,  written  Γ | Σ ⊢ 𝜇, if 
𝑝𝑛𝑜 𝜇 = 𝑝𝑛𝑜 Σ  and Γ | Σ ⊢ 𝜇 𝑙 : Σ 𝑙  for every 
l ∈ 𝑝𝑛𝑜 𝜇 . 
  

    Theorem (?) :  if  
           Γ | Σ ⊢ t: T 
 t  𝜇 ⟶ t′  𝜇𝜇  
 Γ | Σ ⊢ 𝜇  
     then  Γ | Σ ⊢ t𝜇: T  
       
    Still wrong ! 
 
 
 
 



Preservation 
Creation of a new reference cell... 

𝑙∉𝑑𝑑𝑑 𝜇
ref v1  𝜇 ⟶𝑙 (𝜇,𝑙 ↦v1)

                          (E-REFV) 

... breaks the correspondence between the store typing 
and the store. 



Preservation 
Theorem:  if  
 Γ | Σ ⊢ t: T 
 Γ | Σ ⊢ 𝜇 
 t | 𝜇 ⟶ t′| µ 
then, for some Σ′ ⊇  Σ, 
 Γ | Σ𝜇 ⊢ t𝜇: T 
 Γ | Σ𝜇 ⊢ 𝜇𝜇. 
A correct version. 
 

Proof: Easy extension of the preservation proof for 𝜆→.  



Progress 
Theorem: Suppose t is a closed, well-typed term (that is, 
∅ | Σ ⊢ t: T  for some T and Σ). Then either t is a value or 
else, for any store 𝜇 such that ∅ | Σ ⊢ 𝜇, there is some 
term t𝜇 and store 𝜇𝜇 with t | 𝜇 ⟶ t𝜇 | 𝜇𝜇. 



Nontermination via references 
There are well-typed terms in this system that are not 
strongly normalizing. For example: 
  t1 = λr: Ref Unit → Unit .  
   (r ≔ λx: Unit. ! r x ; 
   ! r  unit); 
  t2 = ref λx: Unit. x ; 
 
Applying t1 to t2 yields a (well-typed) divergent term. 



Recursion via references 
Indeed, we can define arbitrary recursive functions using references. 

1. Allocate a ref cell and initialize it with a dummy function of 
the appropriate type: 

fact𝑟𝑟𝑟  =  ref (λn: Nat. 0) 

2. Define the body of the function we are interested in, using 
the contents of the reference cell for making recursive calls:   

 fact𝑏𝑑𝑑𝑏 = 
     λn: Nat. 

if iszero n then 1 else times n ((! fact𝑟𝑟𝑟)(pred n)) 

3. “Backpatch” by storing the real body into the reference cell: 
  fact𝑟𝑟𝑟: = fact𝑏𝑑𝑑𝑏 
4. Extract the contents of the reference cell and use it as 

desired:  
 fact =  ! fact𝑟𝑟𝑟 

 fact 5 



Homework 
• Read chapter 13 
• Preview chapter 14 
• Read and chew over the codes of chap 10.  

 
• HW: 13.5.2 
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