N || Sz

Chapter 3: Untyped Arithmetic Expressions

A small language of numbers and booleans
Basic aspects of programming languages

Introduction

Grammar
Programs
Evaluation

Nil=S==s

4M¥E$ERPE

Notionol lativgte of Mdormatic

Grammar (Syntax) N | | (12 1885 B9 50

t = terms:
true constant true
false constant false
if t+ then t else t conditional constant
0 zero
succ t successor
pred t predecessor
iszero t zero test

t: meta-varaible (non-terminal symbol)

Programs and Evaluations

e A program in the language is just a tferm built
from the forms given by the grammar.

if false then O else 1 (1 = succ 0)
-1

iszero (pred (succ 0))
- true

NI | Exssas

Syntax

Many ways of defining syntax (besides grammar)

Terms, Inductively

The set of terms is the smallest set T such that
1. {true, false, O} € T;
2. if t1 € T, then {succ t1, pred t1, iszero t1} € T;
3. iftleT,t2€ T, and t3 € T,

then if t1 then t2 else 13 € T.

Terms, by Inference Rules N | | iz

The set of terms is defined by the following rules:

truee T falsee T 0eT
tIET tleT tleT
succt; €T predt; € T iszerot; €T

teT teT t3€T
if t; then ty elsety; € T

Inference rules = Axioms + Proper rules

Terms, Concretely N || Eruzass

[Mosioncl lativate of Indcrmatics |

For each natural number i, define a set S, as follows:

So = @

{true, false, 0}
U {succ t;,predt;,iszerot; | t; € §;}
U {ift; then t; else t3 | t;, ty, t3 € §;}.

W

+4

[e—
Il

Finally, let s = |Jsu

Exercise [**]: How many elements does S3 have?

Proposition: T = S

Induction on Terms

Inductive definitions
Inductive proofs

NIl

(12 tA 882 R FE P

Notionol lativgte of Mdormatics

Inductive Definitions N | | Ehszass

[Mosioncl lativate of Indcrmatics |

The set of constants appearing in a term t, written
Consts(t), is defined as follows:

Consts(true) = {true}
Consts(false) = {false}
Consts(0) = {0}
Consts(succ t,) = (Consts(ty)
Consts(pred t1) = Consts(t1)
Consts(iszero t;) = Consts(ty)

Consts(if t; then t; else t3) = Consts(t;) U Consts(t,) U Consts(ts)

Inductive Detfinitions

NI

(12 tA 882 R FE P

[Mossional lativate of Idormatics |

The size of a term t, written size(t), is defined as

follows:

size(true)

size(false)

size(0)

size(succ ti)

size(pred ti)

size(iszero t;)

size(i f t; then t, else t3)

1
1
1
size(ty1) + 1
size(ty1) + 1
size(t,) + 1

size(t,) + size(ty) + size(t3) + 1

Inductive Definitions N | | &z

The depth of a term t, written depth(t), is defined as
follows:

1
1
1

depth(true)
depth(false)
depth(0)
depth(succ t;) depth(t;) +1

depth(pred t;) depth(t;) +1

depth(iszero t;) = depth(t;) +1

depth(if t; then t; else t3) max(depth(t,),depth(t,), depth(ts)) + 1

Il

Inductive Proof N | | i

Lemma. The number of distinct constants in a term t
is no greater than the size of ft:

| Consts(t) | < size(t)

Proof. By induction over the depth of t.
- Case t is a constant

- Case t is pred 11, succ t1, or iszero t1
- Case tis if t1 then t2 else t3

Inductive Proof

Theorem [Structural Induction]

If, for each term s,
given P (r) for all immediate subterms r of s
we can show P(s),

then P (s) holds for all s.

N | l (12 1885 B9 50

MNotional U Mdhﬂuw

Semantic Styles

Three basic approaches

Operational Semantics N | | i

e Operational semantics specifies the behavior of a
programming language by defining a simple
abstract machine for it.

e An example (often used in this course):
- terms as states
- transition from one state to another as simplification

- meaning of t is the final state starting from the state
corresponding to t

Denotational Semantics N | | i

e Giving denotational semantics for a language
consists of
- finding a collection of semantic domains, and then

- defining an interpretation function mapping terms into
elements of these domains.

e Main advantage: It abstracts from the gritty
details of evaluation and highlights the essential
concepts of the language.

Axiomatic Semantics N | | Ezsssiss

e Axiomatic methods take the laws (properties)
themselves as the definition of the language. The

meaning of a term is just what can be proved
about it.

- They focus attention on the process of reasoning about
programs.

- Hoare logic: define the meaning of imperative languages

NIz

Evaluation

Evaluation relation (small-step/big-step)
Normal form
Confluence and termination

Evaluation on Booleans

AVARNSARLA AN LIAT.PRAN

N | 132 RSB S R TR

Nbc-ndlw olh’umah(

Syntax

H = terms:
true constant true
false constant false
iftthentelset conditional

vV = values:
true true value
false false value

Evaluation

if true then t; else t3 — t»

t— 1t
(E-IFTRUE)

if false then t2 else t3 — t3 (E-IFFALSE)

t; — t]
if t; then tr else t3
— if t] then t; else t3

(E-IF)

One-step Evaluation Relation

® The one-step evaluation relation — is the smallest
binary relation on terms satisfying the three rules
in the previous slide.

e When the pair (1,t) is in the evaluation relation,
we say that "t — t' is derivable.”

Derivation Tree N | | iz

“if + then false else false — if u then false else false”
is witnessed by the following derivation tree:

E-IFTRUE
E-IF

s — false

t—u

E-IF
if t then false else false — if u then false else false

where

s %' i f true then false else false

t 5 F s then true else true

u 2 i f false then true else true

Induction on Derivation N | | Ezsssiss

Theorem [Determinacy of one-step evaluation]:
If t — t and t — t", then t' = t"".

Proof. By induction on derivation of t — t'.

If the last rule used in the derivation of + — t' is E-
IfTrue, then t has the form if true then t2 else t3.

It can be shown that there is only one way to
reduce such t.

Normal Form N | | i

e Definition: A term t is in normal form if no
evaluation rule applies to it.

e Theorem: Every value is in normal form.

e Theorem: If t is in normal form, then t is a value.
- Prove by contradiction (then by structural induction).

Multi-step Evaluation Relation N || s

e Definition: The multi-step evaluation relation —=
is the reflexive, transitive closure of one-step
evaluation.

¢ Theorem [Uniqueness of normal forms]: If + —= u
and t —= u’, where u and u' are both normal
forms, then u = u'.

e Theorem [Termination of Evaluation]: For every

term t there is some normal form t' such that t
—u% 1

Big-step Evaluation

viv

t1 ¥ true t2 Vv

if t; then tr else t3 ¥ vy

t; ¥ false t3 4 v3

if t; then t2 else t3 ¥ v3

t1 ¥ nv

succ t; ¥ succ nvy

t1 40
predt; 40

t1 ¥ succ nv;

pred t; ¥ nvy

t; 40
iszero t; ¥ true

t; ¥ succ nvy

iszerot; ¥ false

Ni

AVARNSARLA AN LIAT.PRAN

Bz A2 ERTTA

Nllw of Indormatics

(B-VALUE)

(B-IFTRUE)

(B-IFFALSE)

(B-Succ)

(B-PREDZERO)

(B-PREDSUCC)

(B-ISZEROZERO)

(B-ISZEROSUCC)

Extending Evaluation to Numbers N | | ez

—Nnbc.nd lagtivate of Mdcrmatics

New syntactic forms New evaluation rules t—t
t = .. terms: ,
0 constant zero 4L —t : (E-Succ)
succ t Successor succt; — succt
pred t predecessor
iszerot zero test pred 0 — 0 (E-PREDZERO)
pred (succ nvi) — nv; (E-PREDSUCC)
vV oIl= .. values:
nv numeric value t1 — t)
- (E-PRED)
) pred t; — pred t;
nv = numevric values:
0 zero value iszero 0 — true (E-ISZEROZERO)
succ nv successor value
iszero (succ nv,) — false (E-ISzEroSuUCC)
t1 — T3
: .1 = (E-ISZERO)
iszero t; — iszero t;

Stuckness NI e

e Definition: A closed term is stuck if it is in normal
form but not a value.

e Examples:
succ true
succ false
if zero then true else false

Summary N || s

e How to define syntax?
- Grammar, Inductively, Inference Rules, Generative

e How to define semantics?
— Operational, Denotational, Axomatic

e How to define evaluation relation (operational
semantics)?
- Small-step/Big-step evaluation relation
- Normal form
- Confluence/termination

Homework N | | ez

Nabcnd lagtivate of Mdcrmatics

e Do Exercise 3.5.16 in Chapter 3.

3.5.16 EXERCISE [RECOMMENDED, **x|: A different way of formalizing meaningless
states of the abstract machine is to introduce a new term called wrong and
augment the operational semantics with rules that explicitly generate wrong
in all the situations where the present semantics gets stuck. To do this in
detail, we introduce two new syntactic categories

badnat := non-numeric normal forms:
wrong FUun-time evrov
true constant true
false constant false
badbool := non-boolean normal forms:
wrong run-time error
nv numeric value

and we augment the evaluation relation with the following rules:

if badbool then t; else t2 — wrong (E-IF-WRONG)
succ badnat — wrong (E-SUCC-WRONG)

pred badnat — wrong (E-PRED-WRONG)
iszero badnat — wrong (E-ISZERO-WRONG)

Show that these two treatments of run-time errors agree by (1) finding a
precise way of stating the intuition that “the two treatments agree,” and (2)
proving it. As is often the case when proving things about programming lan-
guages, the tricky part here is formulating a precise statement to be proved—
the proof itself should be straightforward. O

