Chapter 8: Typed Arithmetic Expressions

Types
The Typing Relation
Safety = Progress + Preservation
Reall: Syntax and Semantics

t ::=
 true
 false
 if t then t else t
 0
 succ t
 pred t
 iszero t

Evaluation

\[
\frac{t \rightarrow t'}{(E-\text{IF})}
\]

\[
\frac{t_1 \rightarrow t_1'}{(E-\text{IFTRUE})}
\frac{t_2 \rightarrow t_2}{\text{if true then } t_2 \text{ else } t_3 \rightarrow t_2}
\]

\[
\frac{t_1 \rightarrow t_1'}{(E-\text{IFFALSE})}
\frac{t_2 \rightarrow t_2}{\text{if false then } t_2 \text{ else } t_3 \rightarrow t_3}
\]

\[
\frac{\text{pred } 0 \rightarrow 0}{(E-\text{PREDZERO})}
\]

\[
\frac{\text{pred } (\text{succ } n v_1) \rightarrow n v_1}{(E-\text{PREDSUCC})}
\]

\[
\frac{t_1 \rightarrow t_1'}{(E-\text{PRED})}
\frac{\text{pred } t_1 \rightarrow \text{pred } t_1'}{\text{pred } t \rightarrow \text{pred } t'}
\]

\[
\frac{\text{iszero } 0 \rightarrow \text{true}}{(E-\text{ISZEROZERO})}
\]

\[
\frac{\text{iszero } (\text{succ } n v_1) \rightarrow \text{false}}{(E-\text{ISZEROSUCC})}
\]

\[
\frac{t_1 \rightarrow t_1'}{(E-\text{ISZERO})}
\frac{\text{iszero } t_1 \rightarrow \text{iszero } t_1'}{\text{iszero } t \rightarrow \text{iszero } t'}
\]
Evaluation Results

• Values

\[
v ::= \\
\quad \text{true} \\
\quad \text{false} \\
\quad \text{nv}
\]

\[
v ::= \\
\quad 0 \\
\quad \text{succ \ nv}
\]

• Get stuck (i.e., pred false)
Types of Terms

• Can we tell, without actually evaluating a term, that the term evaluation will not get stuck?

• Distinguish two types of terms:
 - Nat: terms whose results will be a numeric value
 - Bool: terms whose results will be a Boolean value

• “a term t has type T” means that t “obviously” (statically) evaluates to a value of T
 - if true then false else true has type Bool
 - pred (succ (pred (succ 0))) has type Nat
The Typing Relation: $t : T$
Typing Rule for Booleans

New syntactic forms
\[T ::= \text{Bool} \]

types:
\text{type of booleans}

New typing rules
\begin{align*}
\text{true : Bool} & \quad (T-\text{TRUE}) \\
\text{false : Bool} & \quad (T-\text{FALSE}) \\
\frac{t_1 : \text{Bool} \quad t_2 : T \quad t_3 : T}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T} & \quad (T-\text{IF})
\end{align*}
Typing Rules for Numbers

New syntactic forms

\[T ::= \ldots \]

\[\text{Nat} \]

\text{type of natural numbers}

New typing rules

\[t : T \]

\[0 : \text{Nat} \]

\text{(T-ZERO)}

\text{types:}

\[t_1 : \text{Nat} \]

\[\text{succ } t_1 : \text{Nat} \]

\text{(T-SUCC)}

\[t_1 : \text{Nat} \]

\[\text{pred } t_1 : \text{Nat} \]

\text{(T-PRED)}

\[t_1 : \text{Nat} \]

\[\text{iszero } t_1 : \text{Bool} \]

\text{(T-IsZERO)}
Typing Relation: Formal Definition

- **Definition**: the *typing relation* for arithmetic expressions is the *smallest binary relation* between terms and types satisfying all instances of the typing rules.

- A term t is *typable* (or *well typed*) if there is some T such that $t : T$.
Inversion Lemma (Generation Lemma)

- Given a valid typing statement, it shows
 - how a proof of this statement could have been generated;
 - a recursive algorithm for calculating the types of terms.

Lemma [Inversion of the Typing Relation]:

1. If true : R, then R = Bool.
2. If false : R, then R = Bool.
3. If if t₁ then t₂ else t₃ : R, then t₁ : Bool, t₂ : R, and t₃ : R.
4. If 0 : R, then R = Nat.
5. If succ t₁ : R, then R = Nat and t₁ : Nat.
6. If pred t₁ : R, then R = Nat and t₁ : Nat.
7. If iszero t₁ : R, then R = Bool and t₁ : Nat.
Typing Derivation

Statements are formal assertions about the typing of programs. Typing rules are implications between statements. Derivations are deductions based on typing rules.
Uniqueness of Types

- **Theorem [Uniqueness of Types]**: Each term t has at most one type. That is, if t is typable, then its type is unique.

- **Note**: later on, we may have a type system where a term may have many types.
Safety = Progress + Preservation
Safety (Soundness)

• By *safety*, it means well-typed terms do not “go wrong”.

• By “go wrong”, it means reaching a “stuck state” that is not a final value but where the evaluation rules do not tell what to do next.
Safety + Progress + Preservation

Well-typed terms do not get stuck

- **Progress**: A well-typed term is not stuck (either it is a value or it can take a step according to the evaluation rules).

- **Preservation**: If a well-typed term takes a step of evaluation, then the resulting term is also well typed.
Canonical Form

- Lemma [Canonical Forms]:
 - If \(v \) is a value of type \(\text{Bool} \), then \(v \) is either true or false.
 - If \(v \) is a value of type \(\text{Nat} \), then \(v \) is a numeric value according to the grammar for \(\text{nv} \).

\[
\begin{align*}
 v & ::= \\
 & \quad \text{true} \\
 & \quad \text{false} \\
 & \quad \text{nv} \\

 \text{nv} & ::= \\
 & \quad 0 \\
 & \quad \text{succ nv}
\end{align*}
\]

values:
true value
false value
numeric value

numeric values:
zero value
successor value
Progress

- **Theorem** [Progress]: Suppose \(t \) is a well-typed term (that is, \(t : T \) for some \(T \)). Then either \(t \) is a value or else there is some \(t' \) with \(t \Rightarrow t' \).

Proof: By induction on a derivation of \(t : T \).

- case T-True: \(\text{true} : \text{Bool} \quad \text{OK?} \)
- case T-If:
 - \(t_1 : \text{Bool}, t_2 : T, t_3 : T \)
 - \(\text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T \quad \text{OK?} \)
- ...
Preservation

• **Theorem [Preservation]:**
 If \(t : T \) and \(t \leadsto t' \), then \(t' : T \).

Proof: By induction on a derivation of \(t : T \).

 - Case T-True: \(\text{true} : \text{Bool} \) \(\quad \text{OK?} \)
 - Case T-If:
 - t1 : Bool, t2 : T, t3 : T
 --------------------------- OK?
 if t1 then t2 else t3 : T

 - ...

Note: The preservation theorem is often called subject reduction property (or subject evaluation property)
Homework

• Read Chapter 8.
• Do Exercises 8.3.7

8.3.7 Exercise [Recommended, ★★]: Suppose our evaluation relation is defined in the big-step style, as in Exercise 3.5.17. How should the intuitive property of type safety be formalized?