Chapter 9: Simply Typed Lambda-Calculus

Function Types
The Typing Relation
Properties of Typing
The Curry-Howard Correspondence
Erasure and Typability
Function Types

• \(T_1 \rightarrow T_2 \)
 - classifying functions that expect arguments of type \(T_1 \)
 and return results of type \(T_2 \).
 (The type constructor \(\rightarrow \) is right-associative.
 \(T_1 \rightarrow T_2 \rightarrow T_3 \) stands for \(T_1 \rightarrow (T_2 \rightarrow T_3) \))

• We will consider booleans with lambda calculus
 - \(T ::= \text{Bool} \)
 \(T \rightarrow T \)

• Examples
 - \(\text{Bool} \rightarrow \text{Bool} \)
 - \((\text{Bool} \rightarrow \text{Bool}) \rightarrow (\text{Bool} \rightarrow \text{Bool}) \)
"Assume all variables in Γ are different"
Type Derivation Tree

\[
\frac{x: \text{Bool} \in x: \text{Bool}}{x: \text{Bool} \vdash x : \text{Bool}} \quad \text{T-VAR}
\]

\[
\frac{x: \text{Bool} \vdash x : \text{Bool}}{\vdash \lambda x: \text{Bool}. x : \text{Bool}\rightarrow\text{Bool}} \quad \text{T-ABS}
\]

\[
\vdash \text{true : Bool} \quad \text{T-TRUE}
\]

\[
\frac{\vdash \lambda x: \text{Bool}. x : \text{Bool}\rightarrow\text{Bool}}{\vdash (\lambda x: \text{Bool}. x) \text{ true} : \text{Bool}} \quad \text{T-APP}
\]
Properties of Typing

Inversion Lemma
Uniqueness of Types
Canonical Forms
Safety: Progress + Preservation
Inversion Lemma

Lemma [Inversion of the Typing Relation]:

1. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
2. If $\Gamma \vdash \lambda x : T_1 . t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$.
3. If $\Gamma \vdash t_1 \ t_2 : R$, then there is some type T_{11} such that $\Gamma \vdash t_1 : T_{11} \rightarrow R$ and $\Gamma \vdash t_2 : T_{11}$.
4. If $\Gamma \vdash \text{true} : R$, then $R = \text{Bool}$.
5. If $\Gamma \vdash \text{false} : R$, then $R = \text{Bool}$.
6. If $\Gamma \vdash \text{if} \ t_1 \ \text{then} \ t_2 \ \text{else} \ t_3 : R$, then $\Gamma \vdash t_1 : \text{Bool}$ and $\Gamma \vdash t_2, t_3 : R$. \square

Exercise: Is there any context Γ and type T such that $\Gamma \vdash x : T$?
Uniqueness of Types

• **Theorem [Uniqueness of Types]:** In a given typing context Γ, a term t (with free variables all in the domain of Γ) has *at most one type*. Moreover, there is just *one derivation* of this typing built from the inference rules that generate the typing relation.
Canonical Form

- **Lemma** *(Canonical Forms):*
 - If \(v \) is a value of type \(\text{Bool} \), then \(v \) is either true or false.
 - If \(v \) is a value of type \(T_1 \rightarrow T_2 \), then \(v = \lambda x : T_1 . t_2 \).
Progress

- **Theorem [Progress]**: Suppose t is a closed, well-typed term (that is, $\vdash t : T$ for some T). Then either t is a value or else there is some t' with $t \rightarrow t'$.

 Proof: By induction on typing derivations.
Two Structural Lemmas

• **Lemma [Permutation]**: If $\Gamma \vdash t : T$ and Δ is a permutation of Γ, then $\Delta \vdash t : T$.

• **Lemma [Weakening]**: If $\Gamma \vdash t : T$ and x is not in $\text{dom}(\Gamma)$, then $\Gamma, x:S \vdash t : T$.

Note: All can be easily proved by induction on derivation.
Preservation

- **Lemma** [Preservation of types under substitution]:
 If $\Gamma, x:S \vdash t:T$ and $\Gamma \vdash s:S$,
 then $\Gamma \vdash [x\rightarrow s]t:T$.

 Proof: By induction on a derivation of $\Gamma, x:S \vdash t : T$.

- **Theorem** [Preservation]:
 If $\Gamma \vdash t:T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.
The Curry-Howard Correspondence

- A connection between logic and type theory

<table>
<thead>
<tr>
<th>LOGIC</th>
<th>PROGRAMMING LANGUAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>propositions</td>
<td>types</td>
</tr>
<tr>
<td>proposition $P \supset Q$</td>
<td>type $P \rightarrow Q$</td>
</tr>
<tr>
<td>proposition $P \land Q$</td>
<td>type $P \times Q$ (see §11.6)</td>
</tr>
<tr>
<td>proof of proposition P</td>
<td>term t of type P</td>
</tr>
<tr>
<td>proposition P is provable</td>
<td>type P is inhabited (by some term)</td>
</tr>
</tbody>
</table>
Erasure and Typability

Types are used during type checking, but do not appear in the compiled form of the program.

Definition: The *erasure* of a simply typed term \(t \) is defined as follows:

\[
\begin{align*}
\text{erase}(x) &= x \\
\text{erase}(\lambda x : T_1 . t_2) &= \lambda x . \text{erase}(t_2) \\
\text{erase}(t_1 . t_2) &= \text{erase}(t_1) \text{erase}(t_2)
\end{align*}
\]

Theorem:

1. If \(t \rightarrow t' \) under the typed evaluation relation, then \(\text{erase}(t) \rightarrow \text{erase}(t') \).
2. If \(\text{erase}(t) \rightarrow m' \) under the typed evaluation relation, then there is a simply typed term \(t' \) such that \(t \rightarrow t' \) and \(\text{erase}(t') = m' \). □

Untyped?
Curry-Style vs. Church-Style

- **Curry Style**
 - Syntax \(\rightarrow\) Semantics \(\rightarrow\) Typing
 - Often used for implicit typed languages

- **Church Style**
 - Syntax \(\rightarrow\) Typing \(\rightarrow\) Semantics
 - Often used for explicit typed languages
Homework

• Read Chapter 9.
• Do Exercise 9.3.9.

9.3.9 **Theorem [Preservation]:** If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: Exercise [Recommended, ***]. The structure is very similar to the proof of the type preservation theorem for arithmetic expressions (8.3.3), except for the use of the substitution lemma.