Chapter 9: Simply Typed Lambda-Calculus

Function Types
The Typing Relation
Properties of Typing
The Curry-Howard Correspondence
Erasure and Typability

Function Types NI izrusass

o TI—>T2

- classifying functions that expect arguments of type Tl
and return results of type T2.

(The type constructor — is right-associative.
T1—>T2—T3 stands for T1—>(T2—T3))

e We will consider booleans with lambda calculus
- T := Bool
T2>T

e Examples
- Bool—Bool
- (Bool—Bool) — (Bool—Bool)

Syntax
t = terms:
X variable
Ax :T.t abstraction
tt application
v = values:
Ax :T.t abstraction value
T == types:
T-T type of functions
N = contexts:
%] empty context
I,x:T term variable binding

Assume all variables in [are different

NIl Egisi
Evaluation t— 1t
t) — t)
- (E-ApP1)
)t — 1)
ty) — t-
2 (E-APP2)

vy T — v, t’2

(Ax :Ty11 .t12) v2 — [x~ v2]t12 (E-APPABS)

Typing |1“|—t :TI
x:TeTl
N T-VAR
F'ex:T ()
L[x:Ty =1t : Ty
T AX:T1.t2 : Ti—T2 (T-ABs)
'ty : T11—=Ty2 't : T

'ty t2 : T2

7 1 865 57 22

Notional lactidate of Mormot:

Type Derivation Tree NIl

x:Bool € x:Bool

T-VAR
x:Bool - x : Bool

T-ABS T-TRUE
- Ax:Bool.x : Bool—Bool - true : Bool

T-AprP
- (Ax:Bool.x) true : Bool

e

Properties of Typing

Inversion Lemma
Uniqueness of Types
Canonical Forms
Safety: Progress + Preservation

Inversion Lemma N | | iz

Notional lactidate of Mormot:

LEMMA [INVERSION OF THE TYPING RELATION]:

1.
2.

U1

IfT'+x: R, then x:ReT.
IfT+ Ax:T;. t; : R,thenR=T;—R;, for some R, with T, x:T; ~ t, : R,.

. If T+ t; ty : R, then there is some type T;; suchthatT'~ t; : T;; —~R and

I'-t> : Th1.

. IfT'+ true : R, then R = Bool.
. IfT + false : R, then R = Bool.

fIr+1if t) thenty elset3 : R,thenT'+ t; : BoolandTI + tp,t3 : R. O

Exercise: Is there any context [and type T such that [- x x:T?

Uniqueness of Types N || Eztissass

e Theorem [Uniqueness of Types]: In a given typing
context [, a term t (with free variables all in
the domain of [) has at most one type.
Moreover, there is just one derivation of this
typing built from the inference rules that
generate the typing relation.

Canonical Form N | | &z

e Lemma [Canonical Forms]:
- If v is a value of type Bool, then v is either frue or false.
- If vis a value of type T,—T,, then v = Ax:T,.t,.

Progress N | | Ezinsess

e Theorem [Progress]: Suppose t is a closed, well-
typed term (that is, - t : T for some T). Then

either t is a value or else there is some t' with
b=t

Proof: By induction on typing derivations.

Two Structural Lemmas

M
|

e Lemma [Permutation]: If [~ t: T and A is a
permutation of [, then A - 1 : T.

e Lemma [Weakening]: If [~ +:T and x is not in
dom([), then [, x:S ~ +:T.

Note: All can be easily proved by induction on derivation

Preservation N || sz

e Lemma [Preservation of types under substitution]:
If ', xS+ T and [Fs:S,

then [H[x—>s]t:T.

Proof: By induction on a derivation of I, x:S + t: T.

e Theorem [Preservation]:
If [T and t =1, then [1 :T.

The Curry-Howard Correspondence NI |Ezhszass

e A connection between logic and type theory

LOGIC PROGRAMMING LANGUAGES
propositions types
proposition P D Q type P-Q

proposition P A Q
proof of proposition P
proposition P is provable

type P X Q (see §11.6)
term t of type P

type P is inhabited (by some term)

Erasure and Typability N | | &z

e Types are used during type checking, but do not
appear in the compiled form of the program.

DEFINITION: The erasure of a simply typed term t is defined as follows:

erase(x) = X

erase(Ax:T;. t) = Ax. erase(t;)

erase(t; t»2) = erase(t)) erase(t>)
THEOREM:

1. If t — t" under the typed evaluation relation, then erase(t) — erase(t’).

2. If erase(t) — m’ under the typed evaluation relation, then there is a simply
typed term t’ such that t — t’ and erase(t’) = m'. O

Untyped?

Curry-Style vs. Church-Style N | | ez

e Curry Style
- Syntax = Semantics = Typing
— Often used for implicit typed languages

® Church Style
- Syntax = Typing = Semantics
- Often used for explicit typed languages

Homework N || sz

e Read Chapter 9.
® Do Exercise 9.3.9.

9.3.9 THEOREM |PRESERVATION]: fIT'—t: Tand t — t',thenT - t" : T. O

Proof: EXERCISE [RECOMMENDED, **x|. The structure is very similar to the
proof of the type preservation theorem for arithmetic expressions (8.3.3),
except for the use of the substitution lemma. O

