NilE==s

(12 tA 882 R FE P

[Mosioncl lativate of Indcrmatics |

mies = 0Yax 5T IRIE
Design Principles of Programming Languages

Haiyan Zhao, Yingfei Xiong, Zhenjiang Hu
ﬁ/-B-./n\\ ::::_H_ $H¢}E/I

Peking University, Spring Term, 2016

N | | 12 R8P EA 5ET

Self-Introduction

About Me NI i

e 1988: BS, Computer Science, Shanghai Jiaotong Univ.

e 1991: MS, Computer Science, Shanghai Jiaotong Univ.
e 1996: PhD, Information Engineering, Univ. of Tokyo

e 1996: Assistant Professor, Univ. of Tokyo

e 1997: Lecturer, Univ. of Tokyo

e 2000: Associate Professor, Univ. of Tokyo

e 2008: Full Professor, National Institute of Informatics

It RKFEBNNRNE(2006-2008)
It RKFRTHEEZIR(2013.12-)

Research Interest N | | iz sz

e Functional Programming
- Calculating Efficient Functional Programs
- ACM ICFP 2011 General Co-Chair
- ACM ICFP Steering Committee Co-Chair (2012-2013)
- AMC Haskell Symposium Steering Committee Member (2014-)

e Algorithmic Languages and Calculi
- Parallel programming and Automatic Parallelization
- IFIP WG 2.1 Member (IFIP TC 2, Japan Representative)

e Bidirectional Transformation Languages in SE

- Bidirectional languages for software evolution
- Steering Committee Member of BX, ICMT

More Information N | | B

Notional lativgte of Iormatics

e 0o Zhenjiang Hu's home page o

Zhenjiang Hu

Professor

Programming Research Laboratory
Information Systems Architecture Research Division
National Institute of Informatics (NII)

Professor

Department of Informatics
The Graduate University for Advanced Studies

Ireceived BS and MS degrees from Department of Computer Science and Engineering of Shanghai Jiaotong Unviersity
in 1988 and 1991 respectively, and Ph.D degree from Department of Information Engineering of University of Tokyo in
1996. I became a lecturer (assistant professor) in 1997 and an associate professor in 2000 in University of Tokyo. I joined
National Institute of Informatics as a full professor in 2008.

Research

My main interest is in programming languages and software construction in general, and functional programming,
program transformation and model driven software development in particular. I am very interested in program calculation
based on programming algebras, and I am looking into how to apply this theory to automatic program optimization,
systematic parallelization of sequential programs, efficient manipulation of structured documents, and bidirectional model
transformation for software development.

Currently, I have a post-doc position available for those who are interested in bidirectional transformation.
I'welcome excellent people to join my group as intern students, PhD students, or post-doc researchers (JSPS

Fellowship Program and DAAD-NII Program).

P S SR -1 1i.ad

http://www.research.nii.ac.jp/~hu

About Prof. Zhao

2003

2003 -:

NIl

(12 tA 882 R FE P

[Mosioncl lativate of Indcrmatics |

PhD, Univ. of Tokyo

Associate Professor, Peking Univ.

Research Interest

- Software engineering
- Requirements Engineering, Requirements reuse in particular

- Model transformations
- Programming Languages

Contact:
- Office:
- Email -
- Phone :

Rm. 1809, Science Blg #1
zhhy@sei.pku.edu.cn
62757670

About Prof. Xiong N | | &z

e 2009: PhD, Univ. of Tokyo
e 2009-2011: Postdoc, Univ. of Waterloo
e 2012: BAITXIHZFEA, Peking Univ.

e Research Interest

- Software Engineering
- Programming Languages

e Contact:
- IBR—S1R1431E0H
- Mail : xiongyf@pku.edu.cn
- Tel : 62757008

Nl 12 R8P EA 5ET

Course Overview

What is this course about? N | | Ezsssiss

e Study fundamental (formal) approaches to
describing program behaviors that are both

precise and abstract.

- precise so that we can use mathematical tools to
formalize and check interesting properties

- abstract so that properties of interest can be discussed
clearly, without getting bogged down in low-level details

What you can get out of this course? |\ ||

e A more sophisticated perspective on programs,
programming languages, and the activity of
programming
- How tfo view programs and whole languages as formal,

mathematical objects
- How to make and prove rigorous claims about them
- Detailed study of a range of basic language features

e Powerful tools/techniques for language design,
description, and analysis

10

This course is not about ... N | | Ezsssiss

e An introduction to programming

e A course on compiler

e A course on functional programming

e A course on language paradigms/styles

All the above are certainly helpful for your
deep understanding of this course.

11

What background is required? N || azhuzass

e Basic knowledge on
- Discrete mathematics: sets, functions, relations, orders
- Algorithms: list, tree, graph, stack, queue, heap
- Elementary logics: propositional logic, first-order logic

e Familiar with a programming language and basic
Knowledge of compiler construction

12

Textbook N | | 12 R 82 B FE PR

13

Nosonal latidate of icrmatics

Types and Programming Languages
{£&: Benjamin Pierce

HhR#t: The MIT Press Lyacs and.
HhREE: 2002-02-01 o

D% 648

EM: USD 72.00
Ml Hardcover
ISBN: 9780262162098

Let us see how much we can cover in one semester in PKU.

Outline N || sz

e Basic operational semantics and proof techniques
e Untyped Lambda calculus

e Simple typed Lambda calculus

e Simple extensions (basic and derived types)

e References

® Exceptions

e Subtyping

e Recursive types

e Polymorphism

14

Grading N || s

15

Activity in class: 20%
Homework: 40%
Final (Report/Presentation): 40%

RIT— P ERERGNIEFIES, BRSERPHE, H[EERSL

RIT—MES, RIEKEAZAEARNT/FTIREEE,

RIT—NCRmIE S HVRE RS

it —MNREEIEREIZIES

IR —TERA B RERROVSEEIRS,
RIEZREOVEFNE REAZS TRENRIE RE,

IRTF—PEEREG, (ERERESXKEARME,

RIT— 1M RERE, ERELNAITER KA RPIOH

RIT—1MRERE, RUIEPFBNERITRERE —EREZENX

2R B SR I B4RiE

How to study this course? N||é;f{:f‘ﬁf§é%§f%‘§ﬁ

e Before class: scanning through the chapters to
learn and gain feeling about what will be studied

e In class: trying your best to understand the
contents and raising hands when you have
questions

o After class: doing exercises seriously

> Quick check 30 seconds to 5 minutes
> % Easy < 1 hour

* K % Moderate < 3 hours

Kk Challenging > 3 hours

16

eeeee HEHLE 7T 7:40

{E3 PiEX L
VERETS

1J AR T~ B]:/J—F#;D\'—T’

CIeFHARATAN 8]

s 2
lygan R o A 'g‘.' = 4 “T¢
A 9GN s LA INAINTT 10N

17

N || &gz

F & R e
P
B v &

]

Personnel N | | i

e Instructors
- Haiyan Zhao, Associate Professor, PKU
zhhy@sei.pku.edu.cn
- Yingfei Xiong, Assistant Professor, PKU
xiongyf@pku.edu.cn
- Zhenjiang Hu, Professor, NII/PKU
hu@nii.ac. jp

e Teaching Assistant:
- =38: 11501214502@pku.edu.cn
- BEH: yangzx95@pku.edu.cn

18

Information

e Course website:
http://sei.pku.edu.cn/~xiongyfO04/DPPL/main.htm

- Syllabus

- News/Announcements
- Lecture Notes (slides)
- Other useful resources

19

NIz,

Chapter 1: Introduction

What is a type system?
What type systems are good for?
Type Systems and Programming Languages

What is a type system (type theory)? \ || e

e A type system is a tractable syntactic method for
proving the absence of certain (bad) program
behaviors by classifying phrases according to the
Kinds of values they compute.

- Tools for program reasoning

- Classification of terms

- Static approximation

- Proving the absence rather than presence
- Fully automatic (and efficient)

What are type systems good for? N | | ez

e Detecting Errors

- Many programming errors can be detected early, fixed
intermediately and easily.

e Abstraction

- type systems form the backbone of the module languages:
an interface itself can be viewed as “the type of a module.”

e Documentation

- The type declarations in procedure headers and module
interfaces constitute a form of (checkable) documentation.

e Language Safety

- A safe language is one that protects its own abstractions.

e Efficiency

- Removal of dynamic checking; smart code-generation

Type Systems and Languages Design N | | iz

e |Language design should go hand-in-hand with type
system design.

- Languages without type systems tend to offer features
that make typechecking difficult or infeasible.

- Concrete syntax of typed languages tends to be more
complicated than that of untyped languages, since type
annotations must be taken into account.

In typed languages the type system itself is often
taken as the foundation of the design and the
organizing principle in light of which every other aspect

of the design is considered.

Homework

e Read Chapters 1 and 2.

e Install OCaml and read “Basics”
- http://caml.inria.fr/download.en.html
- http://ocaml.org/learn/tutorials/basics.html

24

FHFPR

NIz,

