

# Chapter 6: Nameless Representation of Terms

Terms and Contexts Shifting and Substitution



#### **Bound Variables**



• Recall: bound variables can be renamed, at any moment, to enable substitution:

 $[\mathbf{x} \mapsto \mathbf{s}]\mathbf{x} = \mathbf{s}$  $[\mathbf{x} \mapsto \mathbf{s}]\mathbf{y} = \mathbf{y} & \text{if } \mathbf{y} \neq \mathbf{x} \\ [\mathbf{x} \mapsto \mathbf{s}](\lambda \mathbf{y}.\mathbf{t}_1) = \lambda \mathbf{y}. [\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_1 & \text{if } \mathbf{y} \neq \mathbf{x} \text{ and } \mathbf{y} \notin FV(\mathbf{s}) \\ [\mathbf{x} \mapsto \mathbf{s}](\mathbf{t}_1 \mathbf{t}_2) = [\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_1 [\mathbf{x} \mapsto \mathbf{s}]\mathbf{t}_2$ 

- Variable Representation
  - Represent variables symbolically, with variable renaming mechanism
  - Represent variables symbolically, with bound variables are all different
  - "Canonically" represent variables in a way such that renaming is unnecessary
  - No use of variables





# Terms and Contexts



#### Nameless Terms



- **De Bruijin** Idea: Replacing named variables by natural numbers, where the number k stands for "the variable bound by the k'th enclosing  $\lambda$ ".
  - Examples:

 $\begin{array}{ll} \lambda \times . \times & \lambda \, . 0 \\ \lambda \times . \, \lambda \, y. \, \times \, (y \, \times) & \lambda \, . \, \lambda \, . \, 1 \ (0 \, 1). \end{array}$ 

Definition [Terms]: Let T be the smallest family of sets {T<sub>0</sub>, T<sub>1</sub>, T<sub>2</sub>, ...} such that
1. k ∈ T<sub>n</sub> whenever 0 ≤ k <n;</li>
2. if t<sub>1</sub> ∈ T<sub>n</sub> and n>0, then λ.t<sub>1</sub> ∈ T<sub>n-1</sub>;
3. if t<sub>1</sub> ∈ Tn and t<sub>2</sub> ∈T<sub>n</sub>, then (t<sub>1</sub> t<sub>2</sub>) ∈ T<sub>n</sub>.
Note: T<sub>n</sub> are set of terms with at most n free variables, numbered between 0 and n-1.



#### Name Context



- Naming Context
  - To deal with terms containing free variables
  - $\Gamma = x \rightarrow 4$ ;  $y \rightarrow 3$ ;  $z \rightarrow 2$ ;  $a \rightarrow 1$ ;  $b \rightarrow 0$

#### • Examples

Under the naming context  $\Gamma$  , we have

$$\begin{array}{ll} - x (y z) & 4 (3 2) \\ - \lambda w. y w & \lambda. 4 0 \end{array}$$

 $-\lambda w. \lambda a. x \qquad \lambda . \lambda . 6$ 





# Shifting and Subtitution

### How to define substitution $[k \rightarrow s]t?$



# Shifting



• Under the naming context  $x \rightarrow 1, z \rightarrow 2$ [1  $\rightarrow$  2 ( $\lambda$ .0)]  $\lambda$ .2  $\rightarrow$  ? i.e., [ $x \rightarrow z$  ( $\lambda$ w.w)]  $\lambda$ y.x  $\rightarrow$  ?

DEFINITION [SHIFTING]: The *d*-place shift of a term t above cutoff *c*, written  $\uparrow_c^d(t)$ , is defined as follows:

$$\uparrow_{c}^{d}(\mathbf{k}) = \begin{cases} \mathbf{k} & \text{if } \mathbf{k} < c \\ \mathbf{k} + d & \text{if } \mathbf{k} \ge c \end{cases}$$
$$\uparrow_{c}^{d}(\lambda. \mathbf{t}_{1}) = \lambda. \uparrow_{c+1}^{d}(\mathbf{t}_{1})$$
$$\uparrow_{c}^{d}(\mathbf{t}_{1} \mathbf{t}_{2}) = \uparrow_{c}^{d}(\mathbf{t}_{1}) \uparrow_{c}^{d}(\mathbf{t}_{2})$$

We write  $\uparrow^d(t)$  for  $\uparrow^d_0(t)$ .

- 1. What is  $\uparrow^2(\lambda.\lambda.1(02))$ ?
- 2. What is  $\uparrow^2(\lambda. 01(\lambda. 012))?$



# Substitution



• Definition

$$[\mathbf{j} \mapsto \mathbf{s}]\mathbf{k} = \begin{cases} \mathbf{s} & \text{if } \mathbf{k} = \mathbf{j} \\ \mathbf{k} & \text{otherwise} \end{cases}$$
  
$$[\mathbf{j} \mapsto \mathbf{s}](\lambda.\mathbf{t}_1) = \lambda. [\mathbf{j}+1 \mapsto \uparrow^1(\mathbf{s})]\mathbf{t}_1$$
  
$$[\mathbf{j} \mapsto \mathbf{s}](\mathbf{t}_1 \mathbf{t}_2) = ([\mathbf{j} \mapsto \mathbf{s}]\mathbf{t}_1 [\mathbf{j} \mapsto \mathbf{s}]\mathbf{t}_2)$$

• Example

$$\begin{bmatrix} 1 \rightarrow 2 \ (\lambda . 0) \end{bmatrix} \lambda . 2 \rightarrow \lambda . 3 \ (\lambda . 0)$$
  
i.e., 
$$\begin{bmatrix} x \rightarrow z \ (\lambda w. w) \end{bmatrix} \lambda y. x \rightarrow \lambda y. z \ (\lambda w. w)$$



### Evaluation



$$(\lambda \mathbf{x} \cdot \mathbf{t}_{12}) \mathbf{t}_2 \rightarrow [\mathbf{x} \mapsto \mathbf{t}_2] \mathbf{t}_{12},$$

$$(\lambda \cdot \mathbf{t}_{12}) \mathbf{v}_2 \rightarrow \uparrow^{-1}([\mathbf{0} \mapsto \uparrow^1(\mathbf{v}_2)] \mathbf{t}_{12})$$

Example:

#### ( $\lambda$ .102) ( $\lambda$ .0) $\rightarrow$ 0 ( $\lambda$ .0) 1



# Homework



- Read Chapter 6.
- Do Exercise 6.2.5.
  - 6.2.5 EXERCISE [ $\star$ ]: Convert the following uses of substitution to nameless form, assuming the global context is  $\Gamma$  = a,b, and calculate their results using the above definition. Do the answers correspond to the original definition of substitution on ordinary terms from §5.3?

1.  $[b \mapsto a] (b (\lambda x.\lambda y.b))$ 

- 2.  $[b \mapsto a (\lambda z.a)] (b (\lambda x.b))$
- 3.  $[b \mapsto a] (\lambda b. b a)$
- 4.  $[b \mapsto a] (\lambda a. b a)$

