Recursive Types

Zhenjiang Hu, Haiyan Zhao, Yingfei Xiong
Peking University, Spring Term, 2015
Review: what have we learned so far?

• \(\lambda\)-calculus: function and data can be treated the same

• Types: annotations for preventing bugs
 • All terms can be typed: functions, statements, etc.
 • Safety=Progress+Preservation

• Structural types: can we do better than Java?

• Subtypes: what if a term has more than one type?
What in the latter half of the course?

- Recursive types
 - from finite world to infinite world
 - theory of induction and coinduction
- Type Inference
- Polymorphism
 - theoretical base for generics
 - System F: an important system for academic study

- Do come to class
 - Will be much harder than the first half!
 - The book is not perfect.
 - Class performance will be part of your final score
Defining a linked list

• Implementing in Java

  ```java
  class ListNode {
    int value;
    ListNode next;
  }
  
  • Implementing in fullSimple
    • NatList = <nil:Unit, cons:{Nat,NatList}>
    • nil = <nil=unit> as NatList
    • cons = lambda n:Nat. lambda l:NatList. <cons={n,l}> as NatList
  ```
Compiling

- natlist.f
 NatList = <nil:Unit, cons:{Nat,NatList}>;
nil = <nil=unit> as NatList;
cons = lambda n:Nat. lambda l:NatList.
 <cons={n,l}> as NatList;
Why?

- Source of Parser.mly

 AType :
 ...
 | UCID
 { fun ctx ->
 if isnamebound ctx $1.v then
 TyVar(name2index $1.i ctx $1.v, ctxlength ctx)
 else
 TyId($1.v) }
 ...

- Second NatList is parsed as a new TyId
 - NatList = <nil:Unit, cons:{Nat,NatList}>;
Recursive Types

- Useful in defining complex types
- Need special mechanism to support

- This course is about
 - How useful recursive types are
 - How to support recursive types
Defining Recursive Types

• Using operator μ
 • $\text{NatList} = \mu X. \langle \text{nil} : \text{Unit}, \text{cons} : \{\text{Nat}, X\}\rangle$
 • Meaning: $X = \langle \text{nil} : \text{Unit}, \text{cons} : \{\text{Nat}, X\}\rangle$.

• Constructors of NatList

 \[
 \text{nil} = \langle \text{nil}=\text{unit}\rangle \text{ as } \text{NatList};
 \]

 \[\text{cons} = \lambda n: \text{Nat}. \lambda l: \text{NatList}. \langle \text{cons} = \{n, l\}\rangle \text{ as } \text{NatList};\]

 \[\text{cons} : \text{Nat} \rightarrow \text{NatList} \rightarrow \text{NatList}\]
NatList Functions

\[
\text{isnil} = \lambda l : \text{NatList}. \ \text{case } l \ \text{of}
\]
\[
\begin{align*}
\text{<nil}=u & \Rightarrow \text{true} \\
\mid \text{<cons}=p & \Rightarrow \text{false};
\end{align*}
\]

\text{- isnil} : \text{NatList} \rightarrow \text{Bool}

\[
\text{hd} = \lambda l : \text{NatList}. \ \text{case } l \ \text{of}
\]
\[
\begin{align*}
\text{<nil}=u & \Rightarrow 0 \\
\mid \text{<cons}=p & \Rightarrow p.1;
\end{align*}
\]

\text{- hd} : \text{NatList} \rightarrow \text{Nat}

\[
\text{tl} = \lambda l : \text{NatList}. \ \text{case } l \ \text{of}
\]
\[
\begin{align*}
\text{<nil}=u & \Rightarrow 1 \\
\mid \text{<cons}=p & \Rightarrow p.2;
\end{align*}
\]

\text{- tl} : \text{NatList} \rightarrow \text{NatList}
Can we define an infinite list in NatList?

- 1, 2, 1, 2, 1, 2, 1, 2, ...
- infList = fix (\f. cons 1 (cons 2 f))
- hd (tl (tl infList)) //get the 3rd element
- Unfortunately, will diverge
 - why?
Review: Reduction Order

- Full beta-reduction
 - any redex may be reduced at any time
- Normal Order
 - leftmost, outmost redex is reduced first
- Call by name (used in lazy evaluation languages)
 - Normal Order + No reduction inside abstractions
- Call by value (used in the book)
 - Call by name + Parameters need to be values

- `infList = fix (\f. cons 1 (cons 2 f))`
- `hd (tl (tl infList)) //get the 3rd element`
Interlude: Why do we need infinite lists?

- Computers can only perform finite computations
- Answer
 - Because we can
 - Because it is cool
 - Because it could be more structural and reusable
- Example: find the largest \(i \) where \(i \)th element in Fibonacci sequence is smaller than \(C \)

 Java version:
  ```java
  int index = 0, v1=0, v2=1;
  while (v1 < C) {
    int t = v1+v2;
    v1=v2;
    v2=t;
    index++;
  }
  return index;
  ```

 Haskell version:
  ```haskell
  fib = 0 : scanl (+) 1 fib
  length takeWhile (< C) fib
  ```
Recursive Functional Types

• What is this function type about?

\[\text{Stream} = \mu A. \text{Unit} \rightarrow \{ \text{Nat}, A \}; \]

• Returning elements in an infinite sequence one by one
 • Continuation

• Java counterpart: iterator
 • With a mutable state
A Fibonacci stream

Stream = \mu X. \text{Unit} \rightarrow \{\text{Nat}, X\};

fibonacci =
let fib = fix (\lambda f:\text{Nat} \rightarrow \text{Nat} \rightarrow \text{Stream}.
 \lambda x:\text{Nat}. \lambda y:\text{Nat}.
 \lambda_:\text{Unit}. \{x, f y (\text{plus} x y)\})
 in
 fib 0 1;

• Why not diverge?
Exercises

• Use the idea of Stream to fix infList
• Two functions “nil” and “cons” for list constructions
• Two functions “hd” and “tl” for returning elements
• Construct the following two lists in your implementation
 • 01
 • 1212121212...
• And return the second element
• Implement in fullquirec
Is this a correct implementation?

- InfList = Rec X. Unit-><infNil:Unit, infCons:{Nat,X}>;
- InfBody = <infNil:Unit, infCons:{Nat,InfList}>;
- nil = lambda _:Unit. <infNil=unit> as InfBody;
- cons = lambda n:Nat. lambda l:InfList. lambda _:Unit. <infCons={n,l}> as InfBody;

- zeroOneList = cons 0 (cons 1 nil);
- oneTwoList = fix (lambda l:InfList. cons 1 (cons 2 l));
Review: General Recursions

- Introduce “fix” operator: $\text{fix } f = f(\text{fix } f)$

New syntactic forms:

- $t ::= \ldots$
- $\text{fix } t$

Fixed point of t

New typing rules:

- $\Gamma \vdash t : T$

New evaluation rules:

- $\text{fix } (\lambda x : T_1 . t_2) \rightarrow [x \mapsto (\text{fix } (\lambda x : T_1 . t_2))] t_2$
- $t \rightarrow t'$

(E-FixBeta)

New derived forms:

- $\text{letrec } x : T_1 = t_1 \text{ in } t_2$
- $\text{def } = \text{let } x = \text{fix } (\lambda x : T_1 . t_1) \text{ in } t_2$

(E-Fix)
Correction

• InfList = Rec X. Unit-><infNil:Unit, infCons:{Nat,X}>;
• InfBody = <infNil:Unit, infCons:{Nat,InfList}>;
• nil = lambda _:Unit. <infNil=unit> as InfBody;
• cons = lambda n:Nat. lambda l:InfList. lambda _:_Unit. <infCons={n,l}> as InfBody;

• zeroOneList = cons 0 (cons 1 nil);
• oneTwoList = fix (lambda l:InfList. cons 1 (cons 2 (lambda _:_Unit. 1 unit)));
Hungry Function

• Stupid yet simple function. Will be used to discuss the properties of recursive types.

 • Hungry = \(\mu A. \text{Nat} \rightarrow A \);

 • \(f = \text{fix} (\lambda f: \text{Hungry}. \lambda n:\text{Nat}. \ f) \);
Representing Objects

• Can we represent the following immutable counter?

```java
class Counter {
    int get();
    Counter inc();
    Counter dec();
}
```

• Not with recursive type:

```
• Counter = {get: Unit → Nat, inc: Unit → Counter, dec: Unit → Counter}
```
Functional Objects

Counter = \mu C. \{get: Nat, inc: Unit \to C, dec: Unit \to C\};

\begin{align*}
c = \text{let create} &= \text{fix } (\lambda f: \{x: \text{Nat}\} \to \text{Counter}. \lambda s: \{x: \text{Nat}\}. \{ \\
&\text{get} = s.x, \\
&\text{inc} = \lambda _: \text{Unit}. f \{x=\text{succ}(s.x)\}, \\
&\text{dec} = \lambda _: \text{Unit}. f \{x=\text{pred}(s.x)\} \}) \\
\text{in create} \{x=0\};
\end{align*}

- c : Counter

\begin{align*}
c1 &= c.\text{inc } \text{unit}; \\
c2 &= c1.\text{inc } \text{unit}; \\
c2.\text{get};
\end{align*}

- 2 : Nat
Review: fixed-point combinator

- **Law:** $\text{fix } f = f (\text{fix } f)$
- **Y Combinator**
 \[
 Y = \lambda f. \ (\lambda x. \ f \ (x \ x)) \ (\lambda x. \ f \ (x \ x))
 \]
- **Use of Y Combinator:** calculating $\Sigma_{i=0}^{n} i$
 \[
 f = \lambda f. \ \lambda n. \\
 \quad \text{if (iszero } n \text{) then } 0 \\
 \quad \text{else } n + f (n - 1)
 \]
 \[
 Y \ f
 \]
Review: fixed-point combinator

\[Y = \lambda f. (\lambda x. f (x \, x)) \, (\lambda x. f (x \, x)) \]

\[\text{fix} = \lambda f. (\lambda x. f (\lambda y. x \, x \, y)) \, (\lambda x. f (\lambda y. x \, x \, y)) \]

• Why fix is used instead of \(Y \)?
Answer

\[
\text{fix} = \lambda f. (\lambda x. f (\lambda y. x x y))\ (\lambda x. f (\lambda y. x x y))
\]

\[
Y = \lambda f. (\lambda x. f (x x))\ (\lambda x. f (x x))
\]

- Under full beta-reduction: Let \(f : T \to T \)
 - When \(T \) is a function type
 - Fix and \(Y \) are equal: \((\lambda y (x x) y)\ v = (x x)\ v = (\text{fix} f)\ v\)
 - Else
 - (Fix \(f \)) will stuck, while (\(Y \ f \)) will diverge

- Not under call-by-value because
 - \((x x)\) is not a value
 - while \((\lambda y. x x y)\) is
 - \(Y \) will diverge for any \(f \)
Review: fixed-point combinator

\[\text{fix} = \lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y)) \]

\[Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \]

- Can we define \(Y \) in simple typed \(\lambda \)-calculus?
 - No
 - \(x \) has a recursive type
 - \(Y \) was defined as a special language primitive
Defining \texttt{fix} using recursive types

\[Y_T = \lambda f : T \rightarrow T. \ (\lambda x : (\mu A. A \rightarrow T). \ f \ (x \ x)) \ (\lambda x : (\mu A. A \rightarrow T). \ f \ (x \ x)) \]

\[Y_T : (T \rightarrow T) \rightarrow T \]

• T is the type of the recursive function

• Q: Do languages with recursive types have strong normalization property?
 • Strong normalization: well-typed program will terminate

• A: No, because \(Y_T \) can be defined
Defining Lambda Calculus

• Read the book
Implementation Problem 1

• Hungry = \(\mu A. \text{Nat} \rightarrow A \);
• \(h = \text{fix} \ (\lambda f: \text{Nat} \rightarrow \text{Hungry}. \ \lambda n: \text{Nat}. \ f) \);

• What is the type of \(h \)?
 • Hungry?
 • \(\text{Nat} \rightarrow \text{Hungry} \)?
 • \(\text{Nat} \rightarrow \text{Nat} \rightarrow \text{Hungry} \)?
Simple but Effective Solution

• Every term has one type
• Use fold/unfold to convert between types
• $h = \text{fix} \ (\lambda f:\text{Nat} \to \text{Hungry}. \ \lambda n:\text{Nat}. \ f)$
 • $h: \text{Nat} \to \text{Hungry}$
 • fold[Hungry] h: Hungry
 • unfold[Hungry] (h 1): Nat\toHungry
Iso-recursive Types

$\rightarrow \mu$

$t ::= \ldots$

\[\text{fold}[T] t \]

\[\text{unfold}[T] t \]

$v ::= \ldots$

\[\text{fold}[T] v \]

$T ::= \ldots$

\[X \]

\[\mu X. T \]

Extended λ- (9-1)

```
t_1 \rightarrow t'_1
fold[T] t_1 \rightarrow \text{fold}[T] t'_1
```

(E-FLD)

```
t_1 \rightarrow t'_1
\text{unfold}[T] t_1 \rightarrow \text{unfold}[T] t'_1
```

(E-UNFLD)

New typing rules

```
\Gamma \vdash t : T
```

(T-FLD)

```
U = \mu X. T_1 \quad \Gamma \vdash t_1 : [X \rightarrow U]T_1
```

\[\Gamma \vdash \text{fold}[U] t_1 : U \]

(T-UNFLD)

New evaluation rules

```
\text{unfold}[S] (\text{fold}[T] v_1) \rightarrow v'_1
```

(E-UNFLD FLD)

Figure 20-1: Iso-recursive types ($\lambda\mu$)
Exercise

• Implement (finite) NatList in iso-recursive type
 • implement nil, cons, hd
Example

• NatList = \(\mu X. \langle \text{nil:Unit, cons:}\{\text{Nat,X}\} \rangle \)
• NLBody = \(\langle \text{nil:Unit, cons:}\{\text{Nat,NatList}\} \rangle \)
• nil = \text{fold [NatList]}(\langle \text{nil=unit} \rangle \text{ as NLBody} ;
• cons = \(\lambda n:\text{Nat. } \lambda l:\text{NatList. } \text{fold[NatList]} \langle \text{cons=}\{n,l\} \rangle \text{ as NLBody} \)
Example

\[\text{isnil} = \lambda l: \text{NatList}.\]
\[
\text{case unfold } [\text{NatList}] l \text{ of }
\]
\[
<\text{nil}=u> \Rightarrow \text{true}
\]
\[
| <\text{cons}=p> \Rightarrow \text{false};
\]
\[\text{hd} = \lambda l: \text{NatList}.\]
\[
\text{case unfold } [\text{NatList}] l \text{ of }
\]
\[
<\text{nil}=u> \Rightarrow 0
\]
\[
| <\text{cons}=p> \Rightarrow p.1;
\]
\[\text{tl} = \lambda l: \text{NatList}.\]
\[
\text{case unfold } [\text{NatList}] l \text{ of }
\]
\[
<\text{nil}=u> \Rightarrow 1
\]
\[
| <\text{cons}=p> \Rightarrow p.2;\]
Implementation Problem 2

• Even <: Nat
• A = μX. Nat → (Even × X)
• B = μY. Even → (Nat × Y)

• What is the subtype relation between A and B?
 • A <: B?
 • B <: A?
 • No relation?
Subtyping by assumption

\[\Sigma, X <: Y \vdash S <: T \]
\[\Sigma \vdash \mu X . S <: \mu Y . T \]

Example:

- Even <: Nat
- \(A = \mu X . \text{Nat} \rightarrow (\text{Even} \times X) \)
- \(B = \mu Y . \text{Even} \rightarrow (\text{Nat} \times Y) \)

- Assuming \(X <: Y \)
- We have \(\text{Nat} \rightarrow (\text{Even} \times X) <: \text{Even} \rightarrow (\text{Nat} \times Y) \)
- Thus \(A <: B \)

Why this works? Principle of safe substitution.
• Its implementing algorithm will be explained in the next course
Recursive Types in Practice

• Recursive data types
 • Most language supports recursive data types by nominal type system
 • Java, C#, ...
 • Some languages with structural types try to generate fold/unfold
 • Haskell, OCaml...

• Recursive function types
 • C# supports recursive function types through nominal types
 • “delegate int A()” and “delegate int B()” are different
Homework

• Implement Y combinator in your favorite language except Ocaml
 • Your implementation will be limited by the expressiveness of the language, but should support (fix f) where f:(Nat->Nat)->(Nat->Nat)
 • Your implementation should contain test cases for the teaching assistants to easily verify your implementation
 • Hint: wrap functions in data types, like Java interface
 • Please submit electronically