
Design Principles of Programming Languages

Metatheory of Recursive 
Types

Zhenjiang Hu, Haiyan Zhao, Yingfei Xiong

Peking University, Spring Term, 2016



提醒：课程项目

• 6月8日课程项目报告
• 每组报告20分钟，提问5分钟

• 组队的同学请介绍每名成员的贡献

• 6月7日课程书面报告和代码提交
• 邮件发给吴迪、杨至轩和我

2



Review: Iso-recursive Types

• What are the types of the following terms?
• Hungry = 𝜇A. Nat→A;

• h = fix (𝜆f: Nat→ Hungry. 𝜆n:Nat. f)
• h ?

• fold[Hungry] h ?

• unfold[Hungry] (h 1) ?

3



Review: Iso-recursive Types

4



Equi-recursive approach

• Do not use explicit fold/unfold

• If type A can be constructed from type B by 
applying only fold and/or unfold, A and B are equal

• Example: the following three types are equal
• Hungry

• Nat→Hungry

• Nat→Nat→Hungry

5



Solution

• Alternative 1: Deduce all equal types for a term
• possibly infinite number of types

6



Solution

• Alternative 1: Deduce all equal types for a term
• possibly infinite number of types

• Alternative 2: use algorithms to determine the 
subtyping relations
• An algorithm to determine if type A is a subtype of type 

B

• We do not need an algorithm to determine the equality 
of two types
• It can be deduced from subtyping relations

• 𝐴 <:𝐵 ∧ 𝐵 <: 𝐴 → 𝐴 = 𝐵

• It will never be used

7



Iso-recursive Subtyping

8

Even <:Nat



Without the last rule:
A Derivation Tree

9

𝑁𝑎𝑡 → 𝐸𝑣𝑒𝑛 × 𝐸𝑣𝑒𝑛 <: 𝐸𝑣𝑒𝑛 → (𝑁𝑎𝑡 × 𝑁𝑎𝑡)

𝐸𝑣𝑒𝑛 <:𝑁𝑎𝑡 𝐸𝑣𝑒𝑛 × 𝐸𝑣𝑒𝑛 <:𝑁𝑎𝑡 × 𝑁𝑎𝑡

𝐸𝑣𝑒𝑛 <:𝑁𝑎𝑡 𝐸𝑣𝑒𝑛 <:𝑁𝑎𝑡



With the last rule:
A Derivation Graph

10

𝑁𝑎𝑡 → 𝐸𝑣𝑒𝑛 × 𝑋 <: 𝐸𝑣𝑒𝑛 → (𝑁𝑎𝑡 × 𝑌)

𝐸𝑣𝑒𝑛 <:𝑁𝑎𝑡 𝐸𝑣𝑒𝑛 × 𝑋 <:𝑁𝑎𝑡 × 𝑌

𝐸𝑣𝑒𝑛 <:𝑁𝑎𝑡

𝑋 <: 𝑌
𝜇𝑋.𝑁𝑎𝑡 → 𝐸𝑣𝑒𝑛 × 𝑋 <: 𝜇𝑌. 𝐸𝑣𝑒𝑛 → (𝑁𝑎𝑡 × 𝑌)



The premise function

• 𝑝𝑟𝑒𝑚𝑖𝑠𝑒 𝑆 <: 𝑇 =
∅ 𝑖𝑓 𝑇 = 𝑇𝑜𝑝 ∨ (𝑆 = 𝐸𝑣𝑒𝑛 ∧ 𝑇 = 𝑁𝑎𝑡)

{𝑆1 <: 𝑇1, 𝑆2 <: 𝑇2} 𝑖𝑓 𝑆 = 𝑆1 × 𝑆2 ∧ 𝑇 = 𝑇1 × 𝑇2
𝑇1 <: 𝑆1, 𝑆2 <: 𝑇2 𝑖𝑓 𝑆 = 𝑆1 → 𝑆2 ∧ 𝑇 = 𝑇1 → 𝑇2

{𝑆1 <: 𝑇1} 𝑖𝑓 𝑆 = 𝜇𝑋. 𝑆1 ∧ 𝑇 = 𝜇𝑋. 𝑇1
↑ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• 𝑝𝑟𝑒𝑚𝑖𝑠𝑒 𝑋 =

ቊ
𝑥∈𝑋ڂ 𝑝𝑟𝑒𝑚𝑖𝑠𝑒(𝑥) 𝑖𝑓 ∀𝑥 ∈ 𝑋. 𝑝𝑟𝑒𝑚𝑖𝑠𝑒 𝑥 ↓

↑ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

11



The derivation function

• 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑆 <: 𝑇 =

ቊ
{𝑆 <: 𝑇, 𝑋 <: 𝑌} 𝑖𝑓 𝑆 = 𝜇𝑋. 𝑆1 ∧ 𝑇 = 𝜇𝑌. 𝑇1

{𝑆 <: 𝑇} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑋 = 𝑥∈𝑋ڂ 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑥)

12



The subtyping algorithm

• gfp(X)=if premise(X)↑ then false
else premise(X)⊆derivation(X) then true
else gfp(premise(X)∪X)

• isSubtype(S<:T)=gfp({S<:T})

13



Termination
• X grows larger in every iteration

• Function premise() only produce subexpressions
• subexpression: a sub tree in the AST

• There are finite number of subexpressions for a type

14

𝑁𝑎𝑡 → 𝐸𝑣𝑒𝑛 × 𝑋 <: 𝐸𝑣𝑒𝑛 → (𝑁𝑎𝑡 × 𝑌)

𝐸𝑣𝑒𝑛 <:𝑁𝑎𝑡 𝐸𝑣𝑒𝑛 × 𝑋 <:𝑁𝑎𝑡 × 𝑌

𝐸𝑣𝑒𝑛 <:𝑁𝑎𝑡

𝑋 <: 𝑌
𝜇𝑋.𝑁𝑎𝑡 → 𝐸𝑣𝑒𝑛 × 𝑋 <: 𝜇𝑌. 𝐸𝑣𝑒𝑛 → (𝑁𝑎𝑡 × 𝑌)



Exercises

• Try to determine the following subtype relations 
using the algorithm
• 𝜇𝑋. 𝜇𝑌. 𝑋 × 𝑌 <: 𝜇𝐴. 𝜇𝐵. 𝐴 × 𝐵

• 𝜇𝑋. 𝑋 → 𝑁𝑎𝑡 <: 𝜇𝑌. 𝑌 → 𝑁𝑎𝑡

• 𝜇𝑋.𝑁𝑎𝑡 → 𝐸𝑣𝑒𝑛 × 𝑋 <: 𝐸𝑣𝑒𝑛 → ൫𝑁𝑎𝑡 ×

15



Exercises

• Try to determine the following subtype relations
using the algorithm
• 𝜇𝑋. 𝜇𝑌. 𝑋 × 𝑌 <: 𝜇𝐴. 𝜇𝐵. 𝐴 × 𝐵

• true

• 𝜇𝑋. 𝑋 → 𝑁𝑎𝑡 <: 𝜇𝑌. 𝑌 → 𝑁𝑎𝑡
• false
• the current algorithm allows only to unfold once

• 𝜇𝑋.𝑁𝑎𝑡 → 𝐸𝑣𝑒𝑛 × 𝑋 <: 𝐸𝑣𝑒𝑛 → ൫𝑁𝑎𝑡 ×

16



Changing the typing rule

17

Σ, 𝜇𝑋. 𝑆 <: 𝑇 ⊢ 𝑋 → 𝜇𝑋. 𝑆 𝑆 <: 𝑇

Σ ⊢ 𝜇𝑋. 𝑆 <: 𝑇

Σ, 𝑆 <: 𝜇𝑌. 𝑇 ⊢ 𝑆 <: [𝑌 → 𝜇𝑌. 𝑇]𝑇

Σ ⊢ 𝑆 <: 𝜇𝑌. 𝑇

What is the derviation graph of XX <: 𝐸𝑣𝑒𝑛 → 𝑁𝑎𝑡 × 𝑌𝑌 ? 



New Derivation Graph

18

𝑁𝑎𝑡 → 𝐸𝑣𝑒𝑛 × 𝑋𝑋 <: 𝐸𝑣𝑒𝑛 → (𝑁𝑎𝑡 × 𝑌𝑌)

𝐸𝑣𝑒𝑛 <:𝑁𝑎𝑡 𝐸𝑣𝑒𝑛 × 𝑋𝑋 <:𝑁𝑎𝑡 × 𝑌𝑌

𝐸𝑣𝑒𝑛 <:𝑁𝑎𝑡

XX <: 𝐸𝑣𝑒𝑛 → 𝑁𝑎𝑡 × 𝑌𝑌

𝑋𝑋 <: 𝑌𝑌



Support Function

• 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑚 𝑆 <: 𝑇 =

∅ 𝑖𝑓 𝑇 = 𝑇𝑜𝑝 ∨ (𝑆 = 𝐸𝑣𝑒𝑛 ∧ 𝑇 = 𝑁𝑎𝑡)

{𝑆1 <:𝑇1, 𝑆2 <: 𝑇2} 𝑖𝑓 𝑆 = 𝑆1 × 𝑆2 ∧ 𝑇 = 𝑇1 × 𝑇2
𝑇1 <: 𝑆1, 𝑆2 <: 𝑇2 𝑖𝑓 𝑆 = 𝑆1 → 𝑆2 ∧ 𝑇 = 𝑇1 → 𝑇2

𝑆 <: 𝑋 ↦ 𝜇𝑋. 𝑇1 𝑇1 𝑖𝑓 𝑇 = 𝜇𝑋. 𝑇1
𝑋 ↦ 𝜇𝑋. 𝑆1 𝑆1 <:𝑇 𝑖𝑓 𝑆 = 𝜇𝑋. 𝑆1 ∧ 𝑇 ≠ 𝜇𝑋. 𝑇1, 𝑇 ≠ 𝑇𝑜𝑝

↑ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑚 𝑋 =

ቊ
𝑥∈𝑋ڂ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑚(𝑥) 𝑖𝑓 ∀𝑥 ∈ 𝑋. 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑚 𝑥 ↓

↑ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

19



The algorithm

20



Termination

• X grows larger in every iteration

• S is a subexpression of T either
• S forms a sub tree in the AST of T

• S forms a sub tree in the AST of [X → 𝜇𝑋. 𝑇1]𝑇1 if 
T=𝜇𝑋. 𝑇1

• All pairs produced by 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑆𝑚() are 
subexpressions of the original one

• There is only a finite number of subexpressions

21



Inversible Subtyping Rules

• Functions premise/support requires the subtyping 
rules are inversible:
• There is only one set of premise for each conclusion

• The algorithm will be much more complex if the 
subtyping rules are not inversible

• Example: uninversible rules

22

[𝑋 → 𝜇𝑋. 𝑆]𝑆 <: 𝑇

𝜇𝑋. 𝑆 <: 𝑇

𝑆 <: [𝑌 → 𝜇𝑌. 𝑇]𝑇

𝑆 <: 𝜇𝑌. 𝑇



Inversible Subtyping Rules

• Functions premise/support requires the subtyping 
rules are inversible:
• There is only one set of premise for each conclusion

• The algorithm will be much more complex if the 
subtyping rules are not inversible

• Example: uninversible rules

23

[𝑋 → 𝜇𝑋. 𝑆]𝑆 <: 𝑇 ∧ 𝑇 ≠ 𝜇𝑌. 𝑇1 ∧ 𝑇 ≠ 𝑇𝑂𝑃

𝜇𝑋. 𝑆 <: 𝑇

𝑆 <: [𝑌 → 𝜇𝑌. 𝑇]𝑇

𝑆 <: 𝜇𝑌. 𝑇



Exercise

• Find two types S<:T where S<:T does not hold in 
iso-recursive types (even with the help of 
fold/unfold) but holds in equi-recursive types.

24



Exercise

• Find two types S<:T where S<:T does not hold in 
iso-recursive types (even with the help of 
fold/unfold) but holds in equi-recursive types.

• 𝑆 = 𝜇𝑋.𝑁𝑎𝑡 × 𝑋

• 𝑇 = 𝜇𝑋.𝑁𝑎𝑡 × (𝑁𝑎𝑡 × 𝑋)

25



Fixpoints, Induction, and 
Coinduction

26



Fixed points

• The fixed point of a function f:T→T, is a value (fix 
f)∈T satisfying the following condition:
• fix f = f (fix f)

• When T is a function type
• fix f is a recursive function
• Y and fix combinators produce such fixed point

• When T is not a function
• Y and fix combinators no longer work

27



Review: Terms, by Inference 
Rules
The set of terms is defined by the following rules: 

Inference rules = Axioms + Proper rules



Review: Terms, Concretely

For each natural number i, define a set Si as follows:

Finally, let 



Generating Function

• f(X) = {true, false, 0}
∪ {succ 𝑡1, pred 𝑡1, iszero 𝑡1 ∣ 𝑡1 ∈ 𝑋}
∪ {if 𝑡1 then 𝑡2 else 𝑡3 ∣ 𝑡1, 𝑡2, 𝑡3 ∈ 𝑋}

• S = ڂ𝑓𝑛 ∅

• We will show that S is the least fixed point of f

30



Monotone function and 
closed sets
• Monotone function: f : P(U)→P(U) is monotone iff

• ∀𝑋, 𝑌: 𝑋 ⊆ 𝑌 = 𝑓 𝑋 ⊆ 𝑓(𝑌)

• Let 𝑓: 𝑃 𝑈 → 𝑃(𝑈), X is f-closed if 𝑓 𝑋 ⊆ 𝑋.

31



Knaster-Tarski Theorem

• Knaster-Tarski Theorem
• The intersection of all f-closed sets is the least fixed 

point of monotone function f, denoted 𝑙𝑓𝑝(𝑓).

• Proof:
• Let K be the intersection of all f-closed sets

• Let A be an arbitrary f-closed set

• 𝐾 ⊆ 𝐴 → 𝑓 𝐾 ⊆ 𝑓 𝐴 → 𝑓 𝐾 ⊆ 𝐴

• Since A can be any f-closed set, f 𝐾 ⊆ 𝐾

• 𝑓 𝐾 ⊆ 𝐾 → 𝑓 𝑓 𝐾 ⊆ 𝑓 𝐾 → 𝑓 𝐾 is f-closed→ 𝐾 ⊆ 𝑓 𝐾

• Therefore 𝑓 𝐾 = 𝐾

• K is the least because any fixed point is f-closed

32



Principle of Induction

• If X is f-closed, then 𝑙𝑓𝑝 𝑓 ⊆ 𝑋.

• Proving S = ڂ𝑓𝑛 ∅ = 𝑙𝑓𝑝 𝑓
• ∅ ⊆ 𝑙𝑓𝑝 𝑓 → 𝑓𝑛 ∅ ⊆ 𝑙𝑓𝑝(𝑓) for any n

• Thus, 𝑆 ⊆ 𝑙𝑓𝑝 𝑓

• Let 𝐴 ⊆ 𝐵, we have 𝑓 𝐴 ∪ 𝐵 = 𝑓 𝐴 ∪ 𝑓(𝐵)

• From ∅ ⊆ 𝑓(∅), we have 𝑓𝑛 ∅ ⊆ 𝑓𝑛+1(∅) for any n

• 𝑓 𝑆 = 𝑓 (∅)𝑓𝑛ڂ = 𝑓𝑛+1ڂ ∅ = 𝑆, e.g., S is f-closed

• 𝑙𝑓𝑝 𝑓 ⊆ 𝑆

33



Proving Mathematical 
Induction
• Mathematical induction

1. Show P holds for case n=0
2. When P holds for case n=k, show P holds for case n=k+1
3. P holds for any natural number

• Let 𝑓 𝑋 = 0 ∪ 𝑖 + 1 𝑖 ∈ 𝑋 . We have lfp(f) is the 
whole set of natural numbers

• Let PP be the set of natural number where P holds. We 
have
• 0 ∈ 𝑃𝑃 ∧ 𝑖 ∈ 𝑃𝑃 → 𝑖 + 1 ∈ 𝑃𝑃
• PP is f-closed

• 𝑙𝑓𝑝 𝑓 ⊆ 𝑃𝑃

34



Infinite Values

• Let f(X)={nil}∪{cons i t | i∈Nat, t∈X}

• What is in lfp(X)?

35



Principle of Coinduction

• Let 𝑓: 𝑃 𝑈 → 𝑃(𝑈), X is f-consistent if 𝑋 ⊆ 𝑓 𝑋 .

• The dual of Knaster-Tarski Theorem
• The union of all f-consistent sets is the greatest fixed 

point of monotone function f, denoted g𝑓𝑝(𝑓).
• Proof: By duality

• Principle of Coinduction
• If X is f-consistent, then X ⊆ 𝑔𝑓𝑝 𝑓 .

• Proof: By duality

36



Infinite Members and 
Greatest Fixed Point
• 𝑔𝑓𝑝 𝑓 = ⋂𝑓𝑛 𝑈 , 𝑛 is any natural number

is the greatest fixed point of the monotone 
function f and the universal set U

• Let f(X)={nil}∪{cons i t | i∈Nat, t∈X}, gfp(f) contains 
all finite and infinite lists

37



Summary

• Rules can be represented as generating functions

• The least fixed point is the set of finite terms

• The greatest fixed point is the set of finite and 
infinite terms

• Principles of Induction and Coinduction are useful 
in proving theorems
• See book for examples of using principles of coinduction

38



Exercise

• Defining a generating function s for the subtyping 
relation, where gfp(s) is the set of all pairs of (A, B) 
where A<:B

39

Even <:Nat

𝑋 → 𝜇𝑋. 𝑆 𝑆 <: 𝑇

𝜇𝑋. 𝑆 <: 𝑇

𝑆 <: [𝑌 → 𝜇𝑌. 𝑇]𝑇

𝑆 <: 𝜇𝑌. 𝑇



Exercise

• Defining a generating function s for the subtyping 
relation, where gfp(s) is the set of all pairs of (A, B) 
where A<:B

40

s(R) = { S <: Top | for any type S }
∪ {𝑆1 × 𝑆2 <: 𝑇1 × 𝑇2 | 𝑆1 <: 𝑇1, 𝑆2 <: 𝑇2 ∈ 𝑅}
∪ {𝑆1 → 𝑆2 <: 𝑇1 → 𝑇2|𝑇1 <: 𝑆1, 𝑆2 <:𝑇2 ∈ 𝑅}
∪ {𝑆 <: 𝜇𝑋. 𝑇 | 𝑆 <: 𝑋 ↦ 𝜇𝑋. 𝑇 𝑇 ∈ 𝑅}
∪ {𝜇𝑋. 𝑆 <: 𝑇 | [X ↦ 𝜇𝑋. 𝑇]𝑆 <: 𝑇 ∈ 𝑅}



Homework

• Choose a language with high-order function 
support, and investigate
• (1) Whether and how this language supports recursive 

types,

• (2) How this support differs from what we learned in the 
course, and

• (3) Why this design is adopted for the language.

• Summarize the findings as a report.

41


