

Metatheory of Recursive Types

Zhenjiang Hu, Haiyan Zhao, <u>Yingfei Xiong</u> Peking University, Spring Term, 2016

提醒: 课程项目

- •6月8日课程项目报告
 - 每组报告20分钟,提问5分钟
 - 组队的同学请介绍每名成员的贡献
- •6月7日课程书面报告和代码提交
 - 邮件发给吴迪、杨至轩和我

Review: Iso-recursive Types

- What are the types of the following terms?
 - Hungry = μA . Nat $\rightarrow A$;
 - h = fix (λ f: Nat \rightarrow Hungry. λ n:Nat. f)
 - h ?
 - fold[Hungry] h ?
 - unfold[Hungry] (h 1) ?

Review: Iso-recursive Types

$\rightarrow \mu$		Exter	nds λ_{\rightarrow} (9-1)
t ::= fold [T] t unfold [T] t	terms: folding unfolding	$\frac{\texttt{t}_1 \rightarrow \texttt{t}_1'}{\texttt{fold} \texttt{[T] t}_1 \rightarrow \texttt{fold} \texttt{[T] t}_1'}$	(E-Fld)
v ::= fold [T] v	values: folding	$\frac{\texttt{t}_1 \rightarrow \texttt{t}_1'}{\texttt{unfold} [\texttt{T}] \texttt{t}_1 \rightarrow \texttt{unfold} [\texttt{T}] \texttt{t}_1'}$	(E-Unfld)
Т ::=	types:	New typing rules	$\Gamma \vdash t:T$
Χ μΧ.Τ	type variable recursive type	$\frac{U = \mu X.T_1 \qquad \Gamma \vdash t_1 : [X \mapsto U]T_1}{\Gamma \vdash \text{fold} [U] t_1 : U}$	(T-Fld)
New evaluation rules	$t \rightarrow t'$	$\frac{U = \mu X.T_1 \qquad \Gamma \vdash t_1 : U}{\Gamma \vdash unfold [U] t_1 : [X \mapsto U]T_1}$	(T-Unfld)
unfold [S] (fold [T] v_1) $\rightarrow v_1$			
	(E-UnfldFld)		1

Figure 20-1: Iso-recursive types ($\lambda \mu$)

Equi-recursive approach

- Do not use explicit fold/unfold
- If type A can be constructed from type B by applying only fold and/or unfold, A and B are equal
- Example: the following three types are equal
 - Hungry
 - Nat→Hungry
 - Nat→Nat→Hungry

Solution

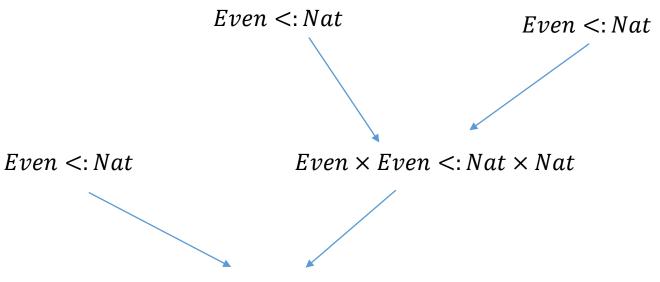
- Alternative 1: Deduce all equal types for a term
 - possibly infinite number of types

Solution

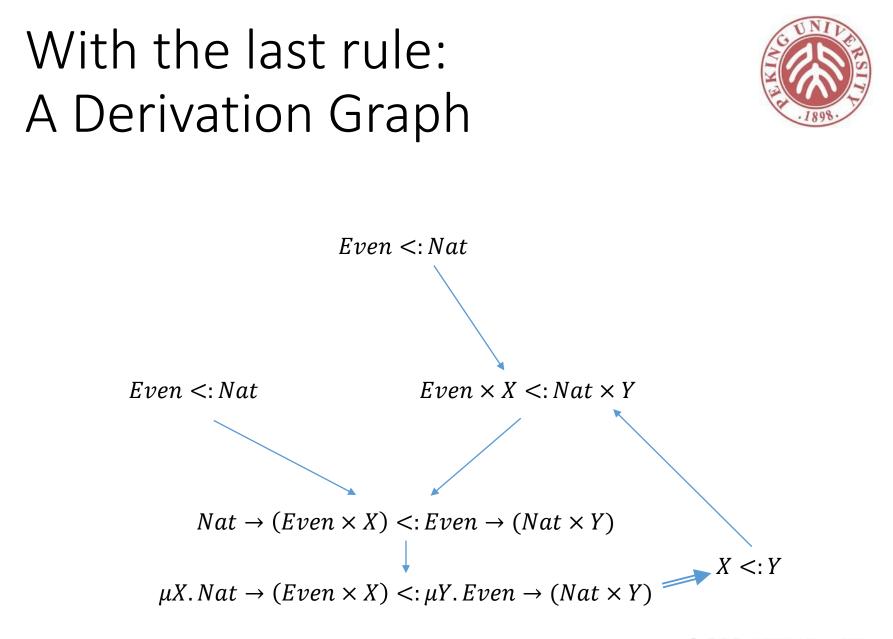
- Alternative 1: Deduce all equal types for a term
 - possibly infinite number of types
- Alternative 2: use algorithms to determine the subtyping relations
 - An algorithm to determine if type A is a subtype of type B
 - We do not need an algorithm to determine the equality of two types
 - It can be deduced from subtyping relations
 - $A <: B \land B <: A \rightarrow A = B$
 - It will never be used

Iso-recursive Subtyping T <: Top Even <: Nat $S_1 <: T_1$ $S_2 <: T_2$ $T_1 <: S_1$ $S_2 <: T_2$ $S_1 \times S_2 \prec T_1 \times T_2$ $S_1 \rightarrow S_2 \prec T_1 \rightarrow T_2$ $\Sigma, X <: Y \vdash S <: T$ $\Sigma \vdash \mu X.S \lt \mu Y.T$

Without the last rule: A Derivation Tree



 $Nat \rightarrow (Even \times Even) <: Even \rightarrow (Nat \times Nat)$



The premise function

•
$$premise(S <: T) =$$

 \emptyset if $T = Top \lor (S = Even \land T = Nat)$
 $\{S_1 <: T_1, S_2 <: T_2\}$ if $S = S_1 \times S_2 \land T = T_1 \times T_2$
 $\{T_1 <: S_1, S_2 <: T_2\}$ if $S = S_1 \rightarrow S_2 \land T = T_1 \rightarrow T_2$
 $\{S_1 <: T_1\}$ if $S = \mu X.S_1 \land T = \mu X.T_1$
 \uparrow otherwise

•
$$premise(X) = \begin{cases} \bigcup_{x \in X} premise(x) & if \forall x \in X. premise(x) \downarrow \\ \uparrow & otherwise \end{cases}$$

The derivation function

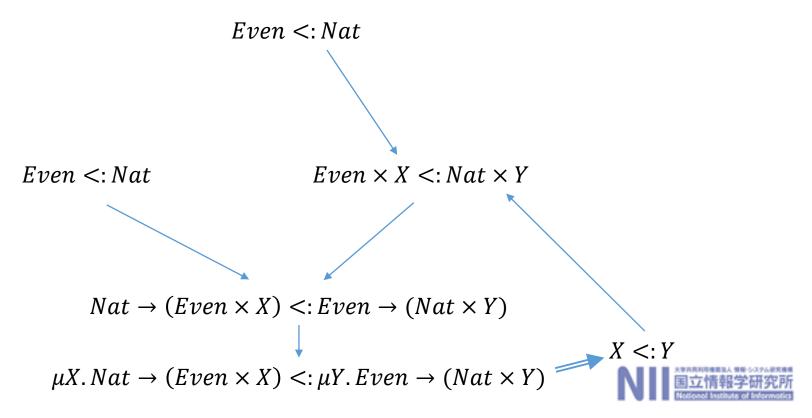
- derivation(S <: T) = $\begin{cases} \{S <: T, X <: Y\} & if S = \mu X.S_1 \land T = \mu Y.T_1 \\ \{S <: T\} & otherwise \end{cases}$
- $derivation(X) = \bigcup_{x \in X} derivation(x)$

The subtyping algorithm

- gfp(X)=if premise(X)↑ then false else premise(X)⊆derivation(X) then true else gfp(premise(X)∪X)
- isSubtype(S<:T)=gfp({S<:T})

Termination

- X grows larger in every iteration
- Function premise() only produce subexpressions
 - subexpression: a sub tree in the AST
- There are finite number of subexpressions for a type



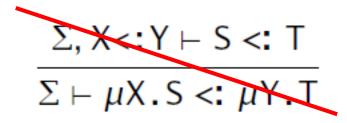
Exercises

- Try to determine the following subtype relations using the algorithm
 - $\mu X. \mu Y. X \times Y <: \mu A. \mu B. A \times B$
 - $\mu X.X \rightarrow Nat <: \mu Y.Y \rightarrow Nat$
 - $\mu X.Nat \rightarrow (Even \times X) <: Even \rightarrow (Nat \times X)$

Exercises

- Try to determine the following subtype relations using the algorithm
 - $\mu X. \mu Y. X \times Y <: \mu A. \mu B. A \times B$
 - true
 - $\mu X.X \rightarrow Nat <: \mu Y.Y \rightarrow Nat$
 - false
 - the current algorithm allows only to unfold once
 - $\mu X.Nat \rightarrow (Even \times X) <: Even \rightarrow (Nat \times X)$

Changing the typing rule

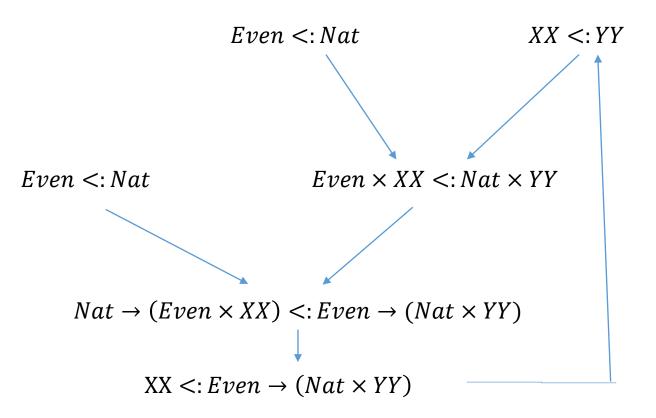


$$\frac{\Sigma, S <: \mu Y. T \vdash S <: [Y \to \mu Y. T]T}{\Sigma \vdash S <: \mu Y. T}$$

$$\frac{\Sigma, \mu X.S <: T \vdash [X \to \mu X.S]S <: T}{\Sigma \vdash \mu X.S <: T}$$

What is the derviation graph of XX $\langle Even \rightarrow (Nat \times YY) \rangle$?

New Derivation Graph



Support Function

• $support_{S_m}(S <: T) =$

• $support_{S_m}(X) = \begin{cases} \bigcup_{x \in X} support_{S_m}(x) & if \ \forall x \in X. support_{S_m}(x) \downarrow \\ \uparrow & otherwise \end{cases}$

The algorithm

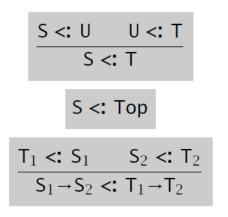
$$\begin{split} gfp(X) &= & \text{if } support(X) \uparrow, \text{ then } false \\ & \text{else if } support(X) \subseteq X, \text{ then } true \\ & \text{else } gfp(support(X) \cup X). \end{split}$$

Termination

- X grows larger in every iteration
- S is a subexpression of T either
 - S forms a sub tree in the AST of T
 - S forms a sub tree in the AST of $[X \rightarrow \mu X. T_1]T_1$ if $T=\mu X. T_1$
- All pairs produced by $support_{S_m}()$ are subexpressions of the original one
- There is only a finite number of subexpressions

Inversible Subtyping Rules

- Functions premise/support requires the subtyping rules are inversible:
 - There is only one set of premise for each conclusion
- The algorithm will be much more complex if the subtyping rules are not inversible
- Example: uninversible rules

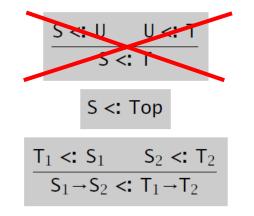


$$\frac{S <: [Y \to \mu Y.T]T}{S <: \mu Y.T}$$

$$\frac{[X \to \mu X.S]S <: T}{\mu X.S <: T}$$

Inversible Subtyping Rules

- Functions premise/support requires the subtyping rules are inversible:
 - There is only one set of premise for each conclusion
- The algorithm will be much more complex if the subtyping rules are not inversible
- Example: uninversible rules



$$\frac{S <: [Y \to \mu Y.T]T}{S <: \mu Y.T}$$

 $[X \to \mu X.S]S <: T \land T \neq \mu Y.T_1 \land T \neq TOP$

 $\mu X.S <: T$

Exercise

• Find two types S<:T where S<:T does not hold in iso-recursive types (even with the help of fold/unfold) but holds in equi-recursive types.

Exercise

- Find two types S<:T where S<:T does not hold in iso-recursive types (even with the help of fold/unfold) but holds in equi-recursive types.
- $S = \mu X. Nat \times X$
- $T = \mu X. Nat \times (Nat \times X)$

Fixpoints, Induction, and Coinduction

Fixed points

- The fixed point of a function f:T→T, is a value (fix f)∈T satisfying the following condition:
 - fix f = f (fix f)
- When T is a function type
 - fix f is a recursive function
 - Y and fix combinators produce such fixed point
- When T is not a function
 - Y and fix combinators no longer work

Review: Terms, by Inference Rules

The set of terms is defined by the following rules:

 $\begin{array}{ll} \mathsf{true} \in \mathcal{T} & \mathsf{false} \in \mathcal{T} & \mathsf{0} \in \mathcal{T} \\ \\ \frac{\mathsf{t}_1 \in \mathcal{T}}{\mathsf{succ} \, \mathsf{t}_1 \in \mathcal{T}} & \frac{\mathsf{t}_1 \in \mathcal{T}}{\mathsf{pred} \, \mathsf{t}_1 \in \mathcal{T}} & \frac{\mathsf{t}_1 \in \mathcal{T}}{\mathsf{iszero} \, \mathsf{t}_1 \in \mathcal{T}} \\ \\ \\ \frac{\mathsf{t}_1 \in \mathcal{T} & \mathsf{t}_2 \in \mathcal{T} & \mathsf{t}_3 \in \mathcal{T}}{\mathsf{if} \, \mathsf{t}_1 \, \mathsf{then} \, \mathsf{t}_2 \, \mathsf{else} \, \mathsf{t}_3 \in \mathcal{T}} \end{array}$

Inference rules = Axioms + Proper rules

Review: Terms, Concretely

For each natural number i, define a set S_i as follows:

$$\begin{array}{rcl} S_0 &=& \varnothing \\ S_{i+1} &=& \{\texttt{true}, \texttt{false}, 0\} \\ && \cup & \{\texttt{succ} \, \texttt{t}_1, \texttt{pred} \, \texttt{t}_1, \texttt{iszero} \, \texttt{t}_1 \mid \texttt{t}_1 \in S_i\} \\ && \cup & \{\texttt{if} \, \texttt{t}_1 \, \texttt{then} \, \texttt{t}_2 \, \texttt{else} \, \texttt{t}_3 \mid \texttt{t}_1, \texttt{t}_2, \texttt{t}_3 \in S_i\}. \end{array}$$

Finally, let
$$S = \bigcup_{i} S_{i}$$
.

Generating Function

- $f(X) = \{true, false, 0\}$ $\cup \{succ t_1, pred t_1, iszero t_1 \mid t_1 \in X\}$ $\cup \{if t_1 then t_2 else t_3 \mid t_1, t_2, t_3 \in X\}$
- S = $\bigcup f^n(\emptyset)$
- We will show that S is the least fixed point of f

Monotone function and closed sets

- Monotone function: $f : P(U) \rightarrow P(U)$ is monotone iff
 - $\forall X, Y : X \subseteq Y = f(X) \subseteq f(Y)$
- Let $f: P(U) \to P(U)$, X is f-closed if $f(X) \subseteq X$.

Knaster-Tarski Theorem

- Knaster-Tarski Theorem
 - The intersection of all f-closed sets is the least fixed point of monotone function f, denoted lfp(f).
 - Proof:
 - Let K be the intersection of all f-closed sets
 - Let A be an arbitrary f-closed set
 - $K \subseteq A \to f(K) \subseteq f(A) \to f(K) \subseteq A$
 - Since A can be any f-closed set, $f(K) \subseteq K$
 - $f(K) \subseteq K \to f(f(K)) \subseteq f(K) \to f(K)$ is f-closed $\to K \subseteq f(K)$
 - Therefore f(K) = K
 - K is the least because any fixed point is f-closed

Principle of Induction

- If X is f-closed, then $lfp(f) \subseteq X$.
- Proving S = $\bigcup f^n(\emptyset) = lfp(f)$
 - $\emptyset \subseteq lfp(f) \rightarrow f^n(\emptyset) \subseteq lfp(f)$ for any n
 - Thus, $S \subseteq lfp(f)$
 - Let $A \subseteq B$, we have $f(A \cup B) = f(A) \cup f(B)$
 - From $\emptyset \subseteq f(\emptyset)$, we have $f^n(\emptyset) \subseteq f^{n+1}(\emptyset)$ for any n
 - $f(S) = f(\bigcup f^n(\emptyset)) = \bigcup f^{n+1}(\emptyset) = S$, e.g., S is f-closed
 - $lfp(f) \subseteq S$

Proving Mathematical Induction

- Mathematical induction
 - 1. Show P holds for case n=0
 - 2. When P holds for case n=k, show P holds for case n=k+1
 - 3. P holds for any natural number
- Let $f(X) = \{0\} \cup \{i + 1 \mid i \in X\}$. We have lfp(f) is the whole set of natural numbers
- Let PP be the set of natural number where P holds. We have
 - $0 \in PP \land i \in PP \rightarrow i + 1 \in PP$
 - PP is f-closed
 - $lfp(f) \subseteq PP$

Infinite Values

- Let f(X)={nil}∪{cons i t | i∈Nat, t∈X}
- What is in lfp(X)?

Principle of Coinduction

- Let $f: P(U) \to P(U)$, X is f-consistent if $X \subseteq f(X)$.
- The dual of Knaster-Tarski Theorem
 - The union of all f-consistent sets is the greatest fixed point of monotone function f, denoted gfp(f).
 - Proof: By duality
- Principle of Coinduction
 - If X is f-consistent, then $X \subseteq gfp(f)$.
 - Proof: By duality

Infinite Members and Greatest Fixed Point

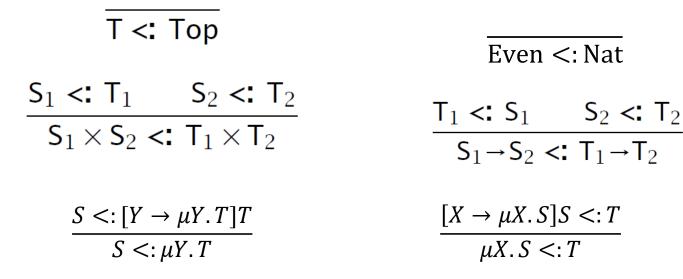
- gfp(f) = ∩fⁿ(U), n is any natural number is the greatest fixed point of the monotone function f and the universal set U
- Let f(X)={nil}∪{cons i t | i∈Nat, t∈X}, gfp(f) contains all finite and infinite lists

Summary

- Rules can be represented as generating functions
- The least fixed point is the set of finite terms
- The greatest fixed point is the set of finite and infinite terms
- Principles of Induction and Coinduction are useful in proving theorems
 - See book for examples of using principles of coinduction

Exercise

 Defining a generating function s for the subtyping relation, where gfp(s) is the set of all pairs of (A, B) where A<:B



Exercise

 Defining a generating function s for the subtyping relation, where gfp(s) is the set of all pairs of (A, B) where A<:B

$$\begin{split} \mathsf{s}(\mathsf{R}) &= \{ \, \mathsf{S} <: \mathsf{Top} \mid \mathsf{for any type S} \, \} \\ &\cup \{ S_1 \times S_2 <: T_1 \times T_2 \mid S_1 <: T_1, S_2 <: T_2 \in R \} \\ &\cup \{ S_1 \to S_2 <: T_1 \to T_2 \mid T_1 <: S_1, S_2 <: T_2 \in R \} \\ &\cup \{ S <: \mu X. T \mid S <: [X \mapsto \mu X. T] T \in R \} \\ &\cup \{ \mu X. S <: T \mid [X \mapsto \mu X. T] S <: T \in R \} \end{split}$$

Homework

- Choose a language with high-order function support, and investigate
 - (1) Whether and how this language supports recursive types,
 - (2) How this support differs from what we learned in the course, and
 - (3) Why this design is adopted for the language.
- Summarize the findings as a report.

