

Design Principles of Programming Languages

Universal Types

Zhenjiang Hu, Haiyan Zhao, <u>Yingfei Xiong</u> Peking University, Spring Term, 2016

System F

- The foundation for polymorphism in modern languages
 - C++, Java, C#, Modern Haskell
- Discovered by
 - Jean-Yves Girard (1972)
 - John Reynolds (1974)
- Also known as
 - Polymorphic λ -calculus
 - Second-order λ -calculus
 - (Curry-Howard) Corresponds to second-order intuitionistic logic
 - Impredicative polymorphism (for the polymorphism mechanism)

Review

• What is the limitation of Hindley-Milner system?

System F by Examples

- id = $\lambda X. \lambda x: X. x;$
- id : $\forall X. X \rightarrow X$

id [Nat];

▶ <fun> : Nat \rightarrow Nat

id [Nat] 0;

▶ 0 : Nat

- What are the types of the following terms?
 - double= λX . $\lambda f: X \rightarrow X$. $\lambda a: X.f(fa)$
 - double [Nat]
 - double [Nat→Nat]

Key to Exercise

- What are the types of the following terms?
 - double= λX . $\lambda f: X \rightarrow X$. $\lambda a: X.f$ (f a)
 - $\forall X. (X \rightarrow X) \rightarrow X \rightarrow X$
 - double [Nat]
 - (Nat \rightarrow Nat) \rightarrow Nat \rightarrow Nat
 - double [Nat→Nat]
 - $((Nat \rightarrow Nat) \rightarrow Nat \rightarrow Nat) \rightarrow (Nat \rightarrow Nat) \rightarrow Nat \rightarrow Nat$

Syntax		Evaluation $t \rightarrow t'$
t ::=	x variable λx:T.t abstraction	$\frac{\mathbf{t}_1 \longrightarrow \mathbf{t}'_1}{\mathbf{t}_1 \mathbf{t}_2 \longrightarrow \mathbf{t}'_1 \mathbf{t}_2} \tag{E-APP1}$
	tt application λX.t type abstraction t [T] type application	$\frac{\mathbf{t}_2 \longrightarrow \mathbf{t}_2'}{\mathbf{v}_1 \ \mathbf{t}_2 \longrightarrow \mathbf{v}_1 \ \mathbf{t}_2'} \tag{E-APP2}$
	c [] ippe application	$(\lambda \mathbf{x}: T_{11}, t_{12}) v_2 \rightarrow [\mathbf{x} \mapsto v_2] t_{12} \text{ (E-AppAbs)}$
v ::=	values: $\lambda x:T.t$ abstraction value $\lambda X.t$ type abstraction value	$\frac{\mathbf{t}_1 \longrightarrow \mathbf{t}_1'}{\mathbf{t}_1 \ [\mathbf{T}_2] \longrightarrow \mathbf{t}_1' \ [\mathbf{T}_2]} $ (E-TAPP)
_		$(\lambda X.t_{12})$ $[T_2] \rightarrow [X \mapsto T_2]t_{12}$ (E-TAPPTABS)
Т ::=	X type variable	Typing $\Gamma \vdash t:T$
	T→Ttype of functions∀X.Tuniversal type	$\frac{\mathbf{x}:\mathbf{T}\in\Gamma}{\Gamma\vdash\mathbf{x}:\mathbf{T}}\tag{T-VAR}$
Г ::=	Ø contexts:	$\frac{\Gamma, \mathbf{x}: T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda \mathbf{x}: T_1 \cdot t_2 : T_1 \to T_2} $ (T-Abs)
	Γ, x:Tterm variable bindingΓ, Xtype variable binding	$\frac{\Gamma \vdash \mathbf{t}_1 : T_{11} \rightarrow T_{12} \qquad \Gamma \vdash \mathbf{t}_2 : T_{11}}{\Gamma \vdash \mathbf{t}_1 \ \mathbf{t}_2 : T_{12}} \qquad \text{(T-App)}$
		$\frac{\Gamma, X \vdash t_2 : T_2}{\Gamma \vdash \lambda X. t_2 : \forall X. T_2} $ (T-TABS)
		$\frac{\Gamma \vdash \mathbf{t}_1 : \forall \mathbf{X}. \mathbf{T}_{12}}{\Gamma \vdash \mathbf{t}_1 [\mathbf{T}_2] : [\mathbf{X} \mapsto \mathbf{T}_2] \mathbf{T}_{12}} $ (T-TAPP)

- Can we type this term in simple typed λ -calculus?
 - $\lambda x \cdot x x$

- Can we type this term in system F?
 - $\lambda x \cdot x x$

- Can we type this term in system F?
 - $\lambda x \cdot x x$
- $\lambda x: \forall X. X \to X. \quad x [\forall X. X \to X] x$
- quadruple = λX . double [X \rightarrow X] (double [X])

• Implment csucc for CNat so that c_i = csucc c_{i-1}

CNat = $\forall X. (X \rightarrow X) \rightarrow X \rightarrow X;$

 $c_0 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. z;$

- \blacktriangleright c₀ : CNat
 - $c_1 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. s z;$
- \blacktriangleright c₁ : CNat

 $c_2 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. s (s z);$

► c₂ : CNat

• Implment csucc for CNat so that c_i = csucc c_{i-1}

CNat = $\forall X. (X \rightarrow X) \rightarrow X \rightarrow X;$ $c_0 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. z;$

- \blacktriangleright c_0 : CNat
 - $c_1 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. s z;$
- c_1 : CNat

 $c_2 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. s (s z);$

► c₂ : CNat

scc =
$$\lambda n$$
. λs . λz . s (n s z);

• Implment csucc for CNat so that $c_i = \text{csucc } c_{i-1}$

CNat = $\forall X. (X \rightarrow X) \rightarrow X \rightarrow X;$ c₀ = $\lambda X. \lambda s: X \rightarrow X. \lambda z: X. z;$

- ► c₀ : CNat
 - $c_1 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. s z;$
- c_1 : CNat

 $c_2 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. s (s z);$

 \blacktriangleright c₂ : CNat

csucc = λ n:CNat. λ X. λ s:X \rightarrow X. λ z:X. s (n [X] s z);

• csucc : CNat \rightarrow CNat

Extending System F

- Introducing advanced types by directly copying the extra rules
 - Tuples, Records, Variants, References, Recursive types
- PolyPair = $\forall X. \forall Y. \{X, Y\}$

Can you define list in System **F**?

- List =...
- nil = ...
- cons = ...

Can you define list in System F?

- List = ∀X. μA. <nil:Unit, cons:{X, A}>;
- Let List X = μ A. <nil:Unit, cons:{X, A}>
 - nil = λX . <nil:Unit> as List X
 - cons = λX . λn : X. λI : List X.<cons={n, I [X]}> as List X
- cons [Nat] 2 (nil [Nat])
- tail = λX. λl: List X. case I of <nil=u> => nil <cons=p> => p.2
- Full polymorphism list requires System F ω

Church Encoding

• Read the book

Basic Properties

- Preservation
- Progress
- Normalization
 - Every typable term halts.
 - Y Combinator cannot be written in System F.

Efficiency Issue

Additional evaluation rule adds runtime overhead.

 $(\lambda X.t_{12})$ $[T_2] \rightarrow [X \mapsto T_2]t_{12}$ (E-TAPPTABS)

- Solution:
 - Only use types in type checking
 - Erase types during compilation

Removing types

 $erase(\mathbf{x}) = \mathbf{x}$ $erase(\lambda \mathbf{x}:\mathsf{T}_1. \mathsf{t}_2) = \lambda \mathbf{x}. erase(\mathsf{t}_2)$ $erase(\mathsf{t}_1 \mathsf{t}_2) = erase(\mathsf{t}_1) erase(\mathsf{t}_2)$ $erase(\lambda \mathsf{X}. \mathsf{t}_2) = erase(\mathsf{t}_2)$ $erase(\mathsf{t}_1 [\mathsf{T}_2]) = erase(\mathsf{t}_1)$

t reduces to t' \Rightarrow erase(t) reduces to erase(t')

A Problem in Extended System F

- Do the following two terms the same?
 - $\lambda x \cdot x$ (λX .error);
 - $\lambda x.x$ error;

Review: Error

 $\Gamma \vdash \text{error} : T$

(T-Error)

A Problem in Extended System F

- Do the following two terms the same?
 - $\lambda x. x$ ($\lambda X.$ error); // a value
 - $\lambda x. x$ error; // reduce to error
- A new erase function

 $erase_{v}(\mathbf{x}) = \mathbf{x}$ $erase_{v}(\lambda \mathbf{x}:\mathsf{T}_{1}.\mathsf{t}_{2}) = \lambda \mathbf{x}. erase_{v}(\mathsf{t}_{2})$ $erase_{v}(\mathsf{t}_{1}\mathsf{t}_{2}) = erase_{v}(\mathsf{t}_{1}) erase_{v}(\mathsf{t}_{2})$ $erase_{v}(\lambda \mathbf{X}.\mathsf{t}_{2}) = \lambda_{-}. erase_{v}(\mathsf{t}_{2})$ $erase_{v}(\mathsf{t}_{1}[\mathsf{T}_{2}]) = erase_{v}(\mathsf{t}_{1}) \operatorname{dummyv}$

Wells' Theorem

- Can we construct types in System F?
 - One of the longest-standing problems in programming languages
 - 1970s 1990s
- [Wells94] It is undecidable whether, given a closed term m of the untyped λ-calculus, there is some well-typed term t in System F such that erase(t) = m.

Rank-N Polymorphism

- In AST, any path from the root to an ∀ passes the left of no more than N-1 arrows
 - $\forall X. X \rightarrow X$:
 - Rank 1
 - $(\forall X. X \rightarrow X) \rightarrow Nat:$
 - Rank 2
 - $((\forall X.X \rightarrow X) \rightarrow Nat) \rightarrow Nat:$
 - Rank 3
 - $Nat \rightarrow (\forall X.X \rightarrow X) \rightarrow Nat \rightarrow Nat:$
 - Rank 2
 - $Nat \rightarrow (\forall X.X \rightarrow X) \rightarrow Nat:$
 - Rank 2

Rank-N Polymorphism

- Rank-1 is HM-system
 - Polymorphic types cannot be passed as parameters
- Type inference for rank-2 is decidable
 - Polymorphic types cannot be used in high-order functional parameters
- Type inference for rank-3 or more is undecidable
- What is the rank of C++ template, Java/C# generics?
 - Rank-1, because any generic parameters passed to a function must be instantiated

