
Design Principles of Programming Languages

Universal Types

Zhenjiang Hu, Haiyan Zhao, Yingfei Xiong

Peking University, Spring Term, 2016

System F

• The foundation for polymorphism in modern languages
• C++, Java, C#, Modern Haskell

• Discovered by
• Jean-Yves Girard (1972)

• John Reynolds (1974)

• Also known as
• Polymorphic 𝜆-calculus

• Second-order 𝜆-calculus
• (Curry-Howard) Corresponds to second-order intuitionistic logic

• Impredicative polymorphism (for the polymorphism
mechanism)

2

Review

• What is the limitation of Hindley-Milner system?

3

System F by Examples

4

Exercise

• What are the types of the following terms?
• double=𝜆X. 𝜆f:X→X. 𝜆a:X.f (f a)

• double [Nat]

• double [Nat→Nat]

5

Key to Exercise

• What are the types of the following terms?
• double=𝜆X. 𝜆f:X→X. 𝜆a:X.f (f a)

• ∀X. (X→X) → X →X

• double [Nat]
• (Nat→ Nat) →Nat→ Nat

• double [Nat→Nat]
• ((Nat→ Nat) → Nat→ Nat) → (Nat→ Nat) → Nat→ Nat

6

7

Exercise

• Can we type this term in simple typed 𝜆-calculus?
• 𝜆𝑥. 𝑥 𝑥

8

Exercise

• Can we type this term in system F?
• 𝜆𝑥. 𝑥 𝑥

9

Exercise

• Can we type this term in system F?
• 𝜆𝑥. 𝑥 𝑥

• 𝜆𝑥: ∀𝑋. 𝑋 → 𝑋. x [∀𝑋. 𝑋 → 𝑋] x

• quadruple = 𝜆X. double [X→X] (double [X])

10

Exercise

• Implment csucc for CNat so that 𝑐𝑖 = csucc 𝑐𝑖−1

11

Exercise

• Implment csucc for CNat so that 𝑐𝑖 = csucc 𝑐𝑖−1

12

Exercise

• Implment csucc for CNat so that 𝑐𝑖 = csucc 𝑐𝑖−1

13

Extending System F

• Introducing advanced types by directly copying the
extra rules
• Tuples, Records, Variants, References, Recursive types

• PolyPair = ∀X. ∀Y. {X, Y}

14

Can you define list in System
F?
• List =…

• nil = …

• cons = …

15

Can you define list in System
F?
• List = ∀X. 𝜇A. <nil:Unit, cons:{X, A}>;

• Let List X = 𝜇A. <nil:Unit, cons:{X, A}>
• nil = 𝜆X. <nil:Unit> as List X
• cons = 𝜆X. 𝜆n:X.𝜆l:List X.<cons={n, l [X]}> as List X

• cons [Nat] 2 (nil [Nat])

• tail = 𝜆𝑋. 𝜆𝑙: 𝐿𝑖𝑠𝑡 𝑋. case l of
<nil=u> => nil
<cons=p> => p.2

• Full polymorphism list requires System F𝜔

16

Church Encoding

• Read the book

17

Basic Properties

• Preservation

• Progress

• Normalization
• Every typable term halts.

• Y Combinator cannot be written in System F.

18

Efficiency Issue

• Additional evaluation rule adds runtime overhead.

• Solution:
• Only use types in type checking

• Erase types during compilation

19

Removing types

20

t reduces to t’ ⇒ erase(t) reduces to erase(t’)

A Problem in Extended
System F
• Do the following two terms the same?

• 𝜆𝑥. 𝑥 (𝜆X.error);

• 𝜆𝑥. 𝑥 error;

21

Review: Error

A Problem in Extended
System F
• Do the following two terms the same?

• 𝜆𝑥. 𝑥 (𝜆X.error); // a value

• 𝜆𝑥. 𝑥 error; // reduce to error

• A new erase function

23

Wells’ Theorem

• Can we construct types in System F?
• One of the longest-standing problems in programming

languages

• 1970s – 1990s

• [Wells94] It is undecidable whether, given a closed
term 𝑚 of the untyped 𝜆-calculus, there is some
well-typed term 𝑡 in System F such that 𝑒𝑟𝑎𝑠𝑒 𝑡 =
𝑚.

24

Rank-N Polymorphism

• In AST, any path from the root to an ∀ passes the
left of no more than N-1 arrows
• ∀𝑋. 𝑋 → 𝑋:

• Rank 1

• ∀𝑋. 𝑋 → 𝑋 → 𝑁𝑎𝑡:
• Rank 2

• (∀𝑋. 𝑋 → 𝑋 → 𝑁𝑎𝑡) → 𝑁𝑎𝑡:
• Rank 3

• 𝑁𝑎𝑡 →(∀𝑋.𝑋→𝑋)→𝑁𝑎𝑡→𝑁𝑎𝑡:
• Rank 2

• 𝑁𝑎𝑡 →(∀𝑋.𝑋→𝑋)→𝑁𝑎𝑡:
• Rank 2

25

Rank-N Polymorphism

• Rank-1 is HM-system
• Polymorphic types cannot be passed as parameters

• Type inference for rank-2 is decidable
• Polymorphic types cannot be used in high-order

functional parameters

• Type inference for rank-3 or more is undecidable

• What is the rank of C++ template, Java/C# generics?
• Rank-1, because any generic parameters passed to a

function must be instantiated

26

