
Design Principles of Programming Languages

Existential Types

Zhenjiang Hu, Haiyan Zhao, Yingfei Xiong

Peking University, Spring Term, 2016

About existential types

• System F: universal types
• ∀𝑋. 𝑋 → 𝑇

• Can we change the quantifier to form a new type?
• ∃𝑋. 𝑋 → 𝑇

• Existential types: 10 years ago
• Almost only in theory

• Used to understand encapsulation

• Existential types: now
• Used in mainstream languages such as Java, Scala,

Haskell

2

Existential Types in Java

• Designed by Martin Odersky

• How to print all elements in a generic collection in
Java?

void printCollection(Collection<Object> c) {

for (Object e : c) {

System.out.println(e);

}

}

3

Existential Types in Java

• Designed by Martin Odersky

• How to print all elements in a generic collection in
Java?

void printCollection(Collection<Object> c) {

for (Object e : c) {

System.out.println(e);

}

}

• Problem: Collection<Integer> cannot be passed.

4

Existential Types in Java

• Designed by Martin Odersky

• How to print all elements in a generic collection in
Java?

void printCollection(Collection<?> c) {

for (Object e : c) {

System.out.println(e);

}

}

• ? stands for some unknown types

5

Existential Types in Java

• The previous example is used in almost every Java
tutorial about wildcards

• Is there a problem?

6

Existential Types in Java

• The previous example is used in almost every Java
tutorial about wildcards

• Is there a problem?

• This following code implements the same function
in a more type-safe manner

<T> void printCollection(Collection<T> c) {

for (T e : c) {

System.out.println(e);

}

}

7

Existential Types in Java

• The use of wildcards is for encapsulation

• Will the following code compile?
public class A {

private class B {…}

public Collection getInternalList() {…}

}

8

Existential Types in Java

• The use of wildcards is for encapsulation

• Will the following code compile?
public class A {

private class B {…}
public Collection getInternalList() {…}

}

• Yes (weird Java design), but is not useful.
Collection bs = new A().getInternalList();

// Compilation error

9

Existential Types in Java

• The use of wildcards is for encapsulation

• Using Wildcards
public class A {

private class B {…}

public Collection<?> getInternalList() {…}

}

Collection<?> bs = new A().getInternalList();

10

Existential Types

• Theoretical Intuition: Can we change the universal
quantifier in ∀𝑋. 𝑇 into existential quantifier ∃𝑋. 𝑇?

• ∀𝑋. 𝑇: for any type X, T is a type

• ∃𝑋. 𝑇: there exists some type X, T is a type
• Collection<?> is a type Collection<X> for some type X

• You should not care about the value of X

11

A Problem in Java

• Rotate a list by one
• List<?> l = getSomeList();

• l.add(l.remove(0)) // compilation error

• Can we improve the design?
• Give concrete name to “?”

12

Existential Type by Example

13

Exercise: are the following
terms useful?

14

Can never do anything with the result

Same as above

Does not encapsulate anything

Defining Existential Type

15

Review: Abstract Data Type

• CounterRep = x: Ref Nat

• newCounter =

λ_: Unit. let r = {x = ref 1} in

{ get = λ_: Unit. ! (r. x),

inc = λ_: Unit. r. x: = succ(! (r. x))};

Can we turn it into a immutable object?

16

Immutable Counter

• CounterRep = x: Nat

• newCounter =

λ_: Unit. let r = {x = 1} in

{ get = λ_: Unit. r. x,

inc = λ_: CounterRep. r};

But ConterRep is not encapsulated for the client.

17

Encoding Abstract Data Types

18

Encoding Objects

19

• Read the book

Encoding existential types in
universal types

p4’ = 𝜆Y. 𝜆g:(∀X.{a:X, f:X→Nat}→Y).

g [Nat] {a=0, f=𝜆x:Nat. succ(x)}

p4’ [Nat] (𝜆X. 𝜆x: {a:X, f:X→Nat}. (x.f x.a))

20

Encoding existential types in
universal types

21

