
Design Principles of Programming Languages

Practice

Zhenjiang Hu, Haiyan Zhao, Yingfei Xiong

Peking University, Spring Term, 2014

arith, fullsimple, fullref

Why learn type theories?

• Art vs. Knowledge
• Art cannot be taught, while knowledge can
• What people have invented
• How to interpret them abstractly
• How to reason their properties formally

• Why formal reasoning important
• Poorly designed languages widely used

• Java array flaw
• JavaScript: google “JavaScript sucks”
• PHP: you know it

• Well designed language needs strictly reasoning
• Devils in details

2

Structure of arith

Scan tokes
(lexer.mll)

Parse terms
(parser.mly)

Evaluate
each terms

(eval in
core.ml)

Print the
values

(printtm in
syntax.ml)

3

Main.ml drives the whole process.

Syntax.ml defines the terms.

Syntax.ml

4

Info: a data type recording the position of the term in the
source file

eval in core.ml

5

eval1: perform a single step reduction

Commands

• Each line of the source file is parsed as a command
• type command = | Eval of info * term
• New commands will be added later

• Main routine for each file
let process_file f =
alreadyImported := f :: !alreadyImported;
let cmds = parseFile f in
let g c =
open_hvbox 0;
let results = process_command c in
print_flush();
results

in
List.iter g cmds

6

Exercise arith.simple_use

• Using arith to write the following equation
• Return five if two is not zero, otherwise return nine

• Hint: read the code in parser.mly

7

Exercise arith.size

• Make the evaluation computes the size of a term
(3.3.2) instead of reducing the term

8

• Hint:
• pr: string->unit prints a

string to the screen
• string_of_int : int->string

converts an integer into a
string

• Remember to change
both .ml and .mli files

• Some abbreviations
• UCID = upper case identifier
• LCID = lower case identifier
• ty = type
• tm = term
• LCURLY = “{“
• RCURLY = “}”
• USCORE = “_”

Exercise arith.big-step

• Change the evaluation to use big-step semantics,
and compare the results with small-step semantics
on the following expressions
• true;
• if false then true else false;
• if 0 then 1 else 2;
• if true then (succ false) else 2;
• 0;
• succ (pred 0);
• iszero (pred (succ (succ 0)));

• What does the comparison reveal?

9

Big-step vs small-step

• Big-step is usually easier to understand
• called “natural semantics” in some articles

• Big-step often leads to simpler proof

• Big-step cannot describe computations that do not
produce a value
• Non-terminating computation

• “Stuck” computation

10

fullsimple

• Implementing all extensions in Chapter 11

• Allow different types of command:
• Evaluation: type-checking and reducing a term
• Bindings

• Variable binding: a:Int;
• Type variable binding: T;
• Term abbreviation binding: t = succ 0;
• Type abbreviation binding: T = Nat -> Nat;

• Types can be used without declaration (uninterpreted
types)

x:X
(lambda a:X. a) x

11

Review: nameless
representation
• What is the nameless representation of the

following term?
• 𝜆𝑥. 𝑥 (𝜆𝑦. 𝑥 𝑦)

• 𝜆. 0 (𝜆. 1 0)

12

fullsimple, terms

type term =

TmVar of info * int * int

| TmAbs of info * string * ty * term

| TmApp of info * term * term

| ..

• Using nameless representation of terms

• The second int for TmVar is used for debugging
• = the number of items in the context

• The “string” in TmAbs is used for printing

13

Example: printing terms

and printtm_ATerm outer ctx t = match t with

| TmVar(fi,x,n) ->

if ctxlength ctx = n then

pr (index2name fi ctx x)

else

pr ("[bad index: " ^ …

| TmAbs(fi,x,tyT1,t2) ->

(let (ctx',x') = (pickfreshname ctx x) in

obox(); pr "lambda ";

pr x'; pr ":"; printty_Type false ctx tyT1; pr "."; …

printtm_Term outer ctx' t2; …

14

Review: context

• What contexts are used in our
course?
• Mapping names to integers in

nameless representation
• Σ: mapping variables to types

• Can be combined into one

• New contexts in the
implementation
• Type variable binding: marking

type variables
• Term abbreviation binding:

Mapping variables to terms
(and their types)

• Type abbreviation binding:
Mapping type variables to
terms

• All can be combined into one

15

type binding =
NameBind

| TyVarBind
| VarBind of ty
| TmAbbBind of term * (ty option)
| TyAbbBind of ty

type context = (string * binding) list

Only used in
printing as a
placeholder

Queried by
index

Auxiliary functions for
nameless representation
• name2index

• info->context
->string->int

• return the index of a name

• index2name
• info->context

->int->string
• inverse of the above

• pickfreshname
• context->string

->(context, string)
• generate a fresh name

using the second
parameter as hint

16

type binding =
NameBind

| TyVarBind
| VarBind of ty
| TmAbbBind of term * (ty option)
| TyAbbBind of ty

type context = (string * binding) list

Exercise fullsimple.nameless

• Construct a term t that is evaluated a term t’ in
fullsimple, where t’ is different from t via only
alpha-renaming (i.e., no beta-reduction)

17

Exercise for fullsimple.rec_fix

• Define plus using fix and test the following
expressions
• plus 10 105;

• plus 0 1;

• plus 0 0;

• plus 2 0;

18

Exercise fullref.rec_no_fix

• Write plus without using fix or letrec in fullref

19

Exercise fullsimple.natlist

• Try the following term in fullsimple and explain why
it cannot be typed

NatList = <nil:Unit, cons:{Nat,NatList}>;

nil = <nil=unit> as NatList;

cons = lambda n:Nat. lambda l:NatList. <cons={n,l}> as
NatList;

20

Exercise fullsimple.match

• Add pattern matching for tuples, and test on the
following expressions
• let {x, y, z} = {true, 1, {2}} in z;
• let {x, y, z} = {true, 1, {2}} in (lambda x:Nat. x) y;
• let {x, y, z} = let x = 1 in {true, x, {2}} in z;
• lambda x:Nat. let {x, y} = {true, 1} in x;
• let x = 0 in let {y, z} = {1, 2} in x;
• let {y, z} = {1, 2} in let y = 3 in y;

• Part of the code is already provided to you in the
following two pages

21

Partial code for
fullsimple.match
• Adding the following line to “type term =“ in syntax.ml

• | TmPLet of info * string list * term * term

• Adding the following lines after line 235 in parser.mly
• | LET Pattern EQ Term IN Term

• { fun ctx -> TmPLet($1, $2, $4 ctx, $6 (List.fold_left (fun x y
-> addname x y) ctx $2)) }

• Pattern :

• LCURLY MetaVars RCURLY

• { $2 }

• | LCURLY RCURLY

• { [] }

• Add the following line to tminfo in syntax.ml
• | TmPLet(fi,_,_,_) -> fi

22

Partial code for
fullsimple.match
• Adding the following lines to “printtm_Term” in syntax.ml

• | TmPLet(fi, xs, t1, t2) ->
• obox0();
• pr "let {";
• let rec print xs =
• match xs with
• x::x'::rest -> pr x; pr ","; print (x'::rest);
• | x::[] -> pr x;
• | [] -> pr ""; in
• print xs;
• pr "} = ";
• printtm_Term false ctx t1;
• print_space(); pr "in"; print_space();
• let ctx' = List.fold_left (fun ctx x -> addname ctx x) ctx xs in
• printtm_Term false ctx' t2;
• cbox()

23

Homework

• Finish fullsimple.match

• Submit your code as a compressed file with one of
the above names

• Your submission should contain file test.f which
contains exactly the expressions to be tested

• TA will perform the following two commands to
verify your submission:
• make

• ./f test.f

24

