B8 B 7EPh

UNJT
5 %

Subsumption

Some types are better than others, in the sense that a
value of one can always safely be used where a value of
the other is expected.

Which can be formalized as by introducing:

1. asubtyping relation between types, written S <: T

2. arule of subsumption stating that, if S <: T, then any value
of type S can also be regarded as havingtype T

[t : S S T
[t : T

('T-SuB)

Principle of safe substitution

NI sz

Subtype Relation

S<:S

S<:U U<: T
S<: T

(S-TRANS)

{1;:T; '€k} < {1;:T; '€} (S—RCDWIDTH)

foreach /i S;<: T;
{1[58i i€1..n} < {ll :Ti i€1..n}

(S-RcDDEPTH)

{k;:S;/$*"} is a permutation of {1;:T; €*-"}
{k_]:s_] jel..n} < {lITI i€1..n}

(S-RCDPERM)

T1 <: S4 So <: To
S1—Sy < T1—TH

(S-ARROW)

S <: Top (S-TOP) sz

Top

Based on A_. (9-1)

Syntax
t = terms:
X variable
AX:T.t abstraction
tt application
vV = values:
AX:T.t abstraction value
T == Lypes:
Top maximum type
T-T type of functions
I' = contexts:
D empty context
I, x:T term variable binding
Evaluation t— t
t, — 'tll
(E-ApP1)
Lt — 1
t —
(E-ApP2)

vy to — V) té

(Ax:Ti1.t12) v2 — [Xx — v2]t12 (E-APPARS)

Subtyping S<:T
S<'S (S-REFL)
S<:U U< T (S-TRANS)
S<:T
S <: Top (S-Top)
T <t S S <t T»
5,25, < T1=T5 (S-ARROW)
Typing '=t:T
x:Tel
S (T-VAR)
I'=x:T
I, Xx:Ty—t2:T>
(T-ABS)
= AX:Ty.t2 : T —T>
't : Ti1—Ti2 =t : T
1 11 1 2 11 (T-APP)
[ttt T2
'—t:S S<T (T-SUB)
'=t:T

Records

- 1 Extends A . (9-1)
| 1
New syntactic forms t] — t
t o= .. | terms: 01— 1.1 (E-PROJ)
{1li=t; ="} record ,
t.] projection t— % E-RCD
{]1=V1 iel.. j-1 , 1j=tj , '|k=tk kej+l..n} ()
Vo= . values: | — {1i=vi =", 1=t} Ti=ty*"}
{li=v; =t} record value | .., typing rules FT—t:T
foreachi TI'~t;: T;
T == .. types: — '. ’ — (T-RCD)
r - tl . {’I . -T. iél..n}
New evaluation rules t— t [-t.1:T; (T-PROJ)
{li=vi <315 — v; (E-PROJRCD)
1]

NJIU’M of Indcrmotic

N | | Essanss

Records & Subtyping

- {} & Extends A.. (15-1) and simple record rules (15-2)
I 1
New subtyping rules S<tT]| {kj:S;’<}is a permutation of {1;:T; ="}

{1;:T; “t*} <2 {1;:T; “"} (S-RCDWIDTH) {kj:Sj <"} < {1;:T; ="}

(S-RCDPERM)
foreachi S;< T;

{1;:S; 1} <2 {1;:T; <4} (S-RCDDEPTH)

N | | sz

Nfbcndlwcolwm

Properties
of
Subtyping

N | | E=tssass

VNI
4 %

Safety

-189%:

Do the Statements of progress and preservation theorems
need change?

Statements of progress and preservation theorems are
unchanged from A_,.

NI s

Safety

Statements of progress and preservation theorems are
unchanged from A_,.

However, Proofs become a bit more involved, because the
typing relation is no longer syntax directed.

Given a derivation, we don’t always know what rule was used
in the last step.

e.g., the rule T-SUB could appear anywhere.

[mt : S S T
[t : T

(T-SuB)

IIIIIIIIIIIIIIII

N | Bz R I8 2 FRTCPH

| Notionol lastiute of Indcrmatics |

Syntax-directed rules

When we say a set of rules is syntax-directed we mean
two things:

1. There is exactly one rule in the set that applies to each

syntactic form. (We can tell by the syntax of a term which rule
to use.)

In order to derive a type for t; t,, we must use T-App.
2. We don't have to “guess" an input (or output) for any rule.

To derive a type for t; t,, we need to derive a type for t,
and a type for t,.

NI sz

UNI P

Preservation

-189%:

Theorem: fI'-t: Tandt — t,thenT 1t : T.

Proof: By induction on typing derivations.

Which cases are likely to be hard?

NI | Eisa

Subsumption case

Case T-Sub: t: S S < T

By the induction hypothesis, '+t : S.
By T-Sub, I' + t": T.

Not hard!

NIl &g

Application case

Case T-App :
t:tl t2 Fl_tl:Tll_)le FI—tZ:Tll T:T12

By the inversion lemma for evaluation, there are three
rules by which t — t’ can be derived:

E-Appl, E-App2, and E-AppAbs.

Proceed by cases.

Application case

Case T-App:
t=t1 tz F|_t1ZT11—>T12 FI—tZ:Tll T=T12

By the evaluation rules in Figure 15-1 and 15-2, there are
three rules by which t — t’ can be derived:

E-Appl, E-App2, and E-AppAbs.

Proceed by cases.

Subcase E-Appl: t,—t, t =1t;t
The result follows from the induction hypothesis and
T-App.
[Et1 : T11—T1o [1ty : T3
[Ft7 to : T1o

(T-AprpP)

NI s

Application case

Case T-App :

Subcase E-App2: t;=v, t,—t, t =v,t,

Similar.

[t1 : T11—T1p [tr 1 Tqq

(T-AprpP)
[Ft1 to : T1o
ty — -
: ° , (E-ApPp2)
Vi T — Vg t2

N | | B R4 F 5P

Ncbmdm dormotic;

UNI P

Application case

189%:

Case T-App:
t=t;t, TFt;:Tyy =T TFt,:Ty; T =T,
Subcase E-AppAbs :
ty =Ax:S11.t1, th,=v, t =[x vy]ty,
by the inversion lemma for the typing relation ...
Ty1 <: 511 and I,x:511 Fty5: T, .
By using T-Sub, I' - t,:S;;.
by the substitution lemma, T + t':Ty,.

[Fty : Ty1—T1o [1ty 1 Tq
[Ft1 to : T1o

(T-AppP)

(/\XITll .t12) Vo — [X — V2]t12 (E-JAPP;A&BS) lll

(12 1 88 7 BR 5Pl

Inversion Lemma for Typing EG)-

Lemma(15.3.3): If I' - Ax:S;.s,: T; — T,, then
T, <:S; and I,x:S; Fs,:T,.

Proof: Induction on typing derivations.

We want to say “By the induction hypothesis...”, but the IH does
not apply (since we do not know that U is an arrow type).

Need another lemma...

Lemma (15.3.2): If U<: T; — T,, thenU has the form of
U1 — Uz,

with T; <: U; and U, <: Ts.
(Proof: by induction on subtyping derivations.)

N | s

Inversion Lemma for Typing Q)"

By this lemma, we know
U= U1 — Uz, with Tl <: U1 and UZ <: T2.

The IH now applies, vyielding
U1 <:Sl and F,X: Sl I_SZ:UZ'

FromU; <: §; and T; <: Uy, rule S-Trans gives
T; <: §;.

From I',x:S; Fs,:U, and U, <:T,, rule T-Sub gives
[,X:5; Fs,: T,
and we are done.

NI iz

Progress

Theorem: If t is a closed, well-typed term, then either
t is a value or else there is some t, withandt — t’

Proof: By induction on typing derivations.

Which cases are likely to be hard?

case T-APP
case T-RCD

case T-PROJ
case T-SUB

N || Exszass

Subtyping
with
Other Features

N | | E=tssass

soncl latidate of Micrmatics

Ascription and Casting

Ordinary ascription:

I_i—tlzT
[ty as T: T

(T-ASCRIBE)

vi as T — v3 (E-ASCRIBE)

NI iz

SO Mkt Idcrmot

Ascription and Casting

Ordinary ascription:
[- tl T
[ty as T: T

(T-ASCRIBE)

vi as T — v; (E-ASCRIBE)

Casting (cf. Java):
[Ft1 : S

(T-CAsT)
[ty as T: T
- vy - T
(E-CAsT)
vi as T — vy

e

SO Mkt Idcrmot

Subtyping and Variants

L . 1
<1;:T; €Lnp < <1;:T; 'qlonthy (S-VARIANTWIDTH)

foreach i S; < T;
<1[. S[i€1..n> <: <1[:T[i€1..n>

(S-VARIANTDEPTH)

<kj:S; /"> is a permutation of <1;:T; '€'">
<kj : Sj jelony & L1 : T i€1..n

(S-VARIANTPERM)

[Ft1 : Ty
[<1l1=t1> : <11:T1>

(T-VARIANT)

ARNSARLL 9N 2270

. - Ran
N | | Eiass s
MNotional lagtidgte of Mdcrmatics

Subtyping and Lists

Sl <: Tl
List S; <: List Ty

(S-LisT)

l.e., List is a covariant type constructor.

N | | B R4 F 5P

Ncbmdm dormotic;

Subtyping and References

S1 <: Ty T1 <0 51
Ref S; <! Ref T,

(S-REF)

i.e., Ref is not a covariant (nor a contravariant) type
constructor.

N || sz

Subtyping and References

S1 <: Ty T1 <I 59
Ref S; < Ref T;

(S-REF)

i.,e., Ref is not a covariant (nor a contravariant) type
constructor.

Why?

— When a reference is read, the context expects a Ty, so
if S;<:T; thenan S, is ok.

N || Exszass

UNIp

q]
R
"us’l&

Subtyping and References

-189%:

S1 <: Ty T1 <0 51

Ref S; <: Ref T;
i.e., Ref is not a covariant (nor a contravariant) type
constructor.

Why?

— When a reference is read, the context expects a Tj,
so if S;<:T; then an S; is ok.

— When a reference is written, the context provides a
T; and if the actual type of the reference is Ref S;,
someone else may use the T; as an S;. So we need

(S-REF)

T; <:§;.

N || Exszass

UNJT
4 %

References again

.189%.

Observation: a value of type Ref T can be used in two

different ways: as a source for values of type T and as a
sink for values of type T.

ldea: Split Ref T into three parts:
— Source T: reference cell with “read capability”
— Sink T: reference cell with “write capability”
— Ref T: cell with both capabilities

NI sz

Subtyping and Arrays

Similarly...

S1 <i Ty T <0 59
Array S; <! Array T,

(S-ARRAY)

S1 <: Ty

(S-ARRAY.JAVA)
Array S; <! Array T,

This is regarded (even by the Java designers) as a mistake
in the design.

pQ||-4mw$mRm

NMMWM

References again

Observation: a value of type Ref T can be used in two
different ways:

— as a source for values of type T, and

— as a sink for values of type T.

References again

Observation: a value of type Ref T can be used in two
different ways:

— as a source for values of type T , and
— as a sink for values of type T.

ldea: Split Ref T into three parts:
— Source T: reference cell with “read capability”
— Sink T: reference cell with “write capability”
— Ref T: cell with both capabilities

NI sz

Modified Typing Rules

[| X F t; : Source Ty
I—’Zl—!tliTll

(T-DEREF)

|’\Z|—t1:SinkT11 I’]Z}—tQ:Tll
[| X Fti:=ty : Unit

('T-ASSIGN)

ARNSARLL 9N 2270

. - Ran
N | | Eiass s
MNotional lagtidgte of Mdcrmatics

Subtyping rules

Sl <: Tl

Source Sy <. Source Ty

(S-SOURCE)

Tl <: Sl
(S-SINK)
Sink S; <: Sink Ty
Ref T; <: Source T; (S-REFSOURCE)
Ref T; <: Sink T; (S-REFSINK)

ARNSARLL 9N 2270

= —
N | | B RIS L E PR
MNotionad lactidate of Indormotics

Capabilities

Other kinds of capabilities can be treated similarly, e.g.,

— send and receive capabilities on communication
channels,

— encrypt/decrypt capabilities of cryptographic keys,

NI | i

Intersection and Union
Types

N | | E=tssass

soncl latidate of Micrmatics

Intersection Types

The inhabitants of T; A T, are terms belonging to both S and
T —i.e.,, T{ A T, is an order-theoretic meet (greatest lower
bound) of T; and T,.

Ty /AT <: T (S-INTER1)
Ty ATy < T (S-INTER2)
S <: T, S <: T»
(S-INTER3)
S<: Ty A\ANT>
S—T1 A S—=T> < S—(T1AT2) (S-INTER4)

NIl Sz

UNJT
5 %

Intersection Types

.]89%.

&
P
=
V
‘\~

Intersection types permit a very flexible form of finitary

overloading.
+ : (Nat—Nat—Nat) /\ (Float—Float—Float)

This form of overloading is extremely powerful.
Every strongly normalizing untyped lambda-term can be typed
in the simply typed lambda-calculus with intersection types.
type reconstruction problemis undecidable

Intersection types have not been used much in language
designs (too powerful!), but are being intensively
investigated as type systems for intermediate languages
in highly optimizing compilers (cf. Church project).

NI sz

Union types

Union types are also useful.

T; VT, is an untagged (non-disjoint) union of T; and T,.
No tags : no case construct. The only operations we can

safely perform on elements of T; VT, are ones that make
sense for both T, and T,.

N. B: untagged union types in C are a source of type
safety violations precisely because they ignores this
restriction, allowing any operation on an element of T; Vv
T, that makes sense for either T, or T,.

Union types are being used recently in type systems for
XML processing languages (cf. Xduce, Xtatic).

NI iz

Varieties of Polymorphism

e Parametric polymorphism (ML-style)
e Subtype polymorphism (OO-style)
* Ad-hoc polymorphism (overloading)

AVARNSARLL AN ZATiNREN

Chap 16
Metatheory of Subtyping

Algorithmic Subtyping
Algorithmic Typing
Joins and Meets

N | | E=tssass

Notional lagtidate of Mdcrmatics

Developing
an algorithmic
subtyping relation

NI|Essazm

Subtype Relation

S<:S (S-REFL)

S<:U U<: T
S< T

(S-TRANS)

{1;:T; st p <o {1;:T; <"} (S-RCcDWIDTH)

foreach /i S; < T;
{]-I:SI i€1..n} <: {11 :TI, i€1..n}

(S-RcpDEPTH)

{k;:S;/S*~"} is a permutation of {1;:T; ‘<*"}
{k_/:Sj j€1..n} < {lITI i€1..n}

(S-RcDPERM)

T1 <: S1 So <: T»p

(S-ARROW)
S1—S2 <: T1—TH

S <: Top (S-Top)
INII

VNI
6 %

Issues in Subtyping

For a given subtyping statement, there are multiple rules
that could be used in a derivation.

1. The conclusions of S-RcdWidth, S-RcdDepth, and S-
RcdPerm overlap with each other.

2. S-REFL and S-TRANS overlap with every other rule.

VNI
6 %

What to do?

We'll turn the declarative version of subtyping into the
algorithmic version.

The problem was that we don't have an algorithm to
decidewhen S <: TorI'F t: T.

Both sets of rules are not syntax-directed.

VNI
6 %

Syntax-directed rules

-189%:

In the simply typed lambda-calculus (without subtyping),
each rule can be “read from bottom to top” in a
straightforward way.

[Ftq T11—T1o [Ft> : Tq1q
[Et1 to : T1o

(T-App)

N || Exszass

UNJT
4 %

Syntax-directed rules

In the simply typed lambda-calculus (without subtyping),
each rule can be “read from bottom to top” in a
straightforward way.
[Ft1 : T11—T1o [Ft> : Tq1q
[Ft1 t2 : Ti2

(T-App)

If we are given some I' and some t of the form t; t,, we
can try to find a type for t by

1. finding (recursively) a type for t4

2. checkingthat it has the form T;; — Ty,

3. finding (recursively) a type for t,

4. checkingthatitisthe same as Ty

NI sz

Syntax-directed rules

Technically, the reason this works is that we can divide the

“positions” of the typing relation into input positions (i.e.,
[and t) and output positions (T).

— For the input positions, all metavariables appearing in the
premises also appear in the conclusion (so we can calculate
inputs to the “subgoals” from the subexpressions of inputs to

the main goal)

— For the output positions, all metavariables appearing in the
conclusions also appear in the premises (so we can calculate
outputs from the main goal from the outputs of the subgoals)

[tl . Tll—TIQ [tg . Tll

(T-App)
[Ft1 to : Tqo

|\ || B

UNJT
5 %

Syntax-directed sets of rules

.189%.

The second important point about the simply typed
lambda-calculus is that the set of typing rules is syntax-
directed, in the sense that, for every “input” T" and t, there

is one rule that can be used to derive typing statements
involving t.

E.g., if tis an application, then we must proceed by trying
to use T-App. If we succeed, then we have found a type

(indeed, the unigue type) for t. If it fails, then we know
that t is not typable.

— no backtracking!

NI sz

Non-syntax-directedness of typing

When we extend the system with subtyping, both aspects
of syntax-directedness get broken.

1. The set of typing rules now includes two rules that can be used
to give a type to terms of a given shape (the old one plus T—suB)

[-t : S S< T
Il S |
2. Worse yet, the new rule T-SUB itself is not syntax directed: the

inputs to the left-hand subgoal are exactly the same as the
inputs to the main goal!

(T-SuB)

(Hence, if we translated the typing rules naively into a
typechecking function, the case corresponding to T-SUB would
cause divergence.)

52 57 B FE P

NII

NI
0 P

Non-syntax-directedness of subtypingtv

-189%:

&
P
=
S
\~

Moreover, the subtyping relation is not syntax directed
either.
1. There are lots of ways to derive a given subtyping
statement.
2. The transitivity rule
S<:U U<: T
S<: T
is badly non-syntax-directed: the premises contain a
metavariable (in an “input position”) that does not
appear at all in the conclusion.

To implement this rule naively, we have to guess a

(S-TRANS)

|
value for U! NIIELA!*B-?—EH%P}?

| Notionol lastiute of Indcrmatics |

What to do?

1. Observation: We don’t need lots of ways to prove a
given typing or subtyping statement — one is enough.

—Think more carefully about the typing and subtyping
systems to see where we can get rid of excess flexibility

2. Use the resulting intuitions to formulate new
“algorithmic” (i.e., syntax-directed) typing and
subtyping relations.

3. Prove that the algorithmic relations are “the same as”
the original onesin an appropriate sense.

NI iz

Algorithmic Subtyping

N | | E=tssass

osoncl lautidate of Micrmaotics

UNJT
5 %

What to do

How do we change the rules deriving S <: T to be
syntax-directed?

There are lots of ways to derive a given subtyping
statement S <: T.

The general idea is to change this system so that there is
only one way to derive it.

NI sz

Step 1: simplify record subtyping

Idea: combine all three record subtyping rules into one
“macro rule” that captures all of their effects

{1/, iEl..n} ; {kj jEl..m} kj — 1/- lmplleS Sj < T,’
{kj:S; /€1-m} < {1;:T; €*-"}

(S-Rcp)

N | |Eissas

Simpler subtype relation

S<:S (S-REFL)

S<:U U< T
R (S-TRANS)

{l,‘ iel“"} C {kj j€1"m} ki =1; implies Sj <i T
' S-RcD
{kj . Sj jez..m} < {1i3Ti iez..n} ()
Ty <0 51 So <: Thp

S s, < T T, (S-ARROW)
S <: Top (S-Top)

ARNSARLL 9N 2270

. - Ran
N | | Eiass s
MNotional lagtidgte of Mdcrmatics

Step 2: Get rid of reflexivity

Observation: S-REFL is unnecessary.

Lemma: S <: S can be derived for every type S without
using S-REFL.

NI | Eisa

Even simpler subtype relation

S<L: U U< T
S<: T

{l,‘ iel""} C {kj jel..m} kj = 1; |mp||es Sj < T;
{kjsj j€1..m} < {11.:']:‘[i€1..n}

(S-Reb)

T <0 59 So <: T»
S1—S2 <. T1—T»

(S-ARROW)

S <: Top (S-Top)

."l-..:...u "m LaAarienam
N | | B RS2 ER PR
MNotionad lagt '] normotics

RO bAs of

UNI P

Step 3: Get rid of transitivity

Ki
2l
158>

-189%:

Observation: S-Trans is unnecessary.

Lemma: If S <: T can be derived, then it can be derived
without using S-Trans .

NIl &g

“Algorithmic” subtype relation

' 1S <: Top (SA-Top)

» T1 < S » Sy <: T»

(SA-ARROW)
> S1—Sy < T1—T»

{l,‘ iel""} C {kj jel“m} for each ki =1;, > Sj <t Tj

. . (SA-RcD)
}_, {kij j€1..m} < {1ITI l€1..n}

LLA L L L PN ¥a

v - -~ e L L
N | | Essanss
MNotional lagtidgte of Mdcrmatics

Soundness and completeness G2

Theorem: S<:Tiff »S<:T

Terminology:

— The algorithmic presentation of subtyping is sound with respect
to the original if »S <:T implies S <: T. (Everything
validated by the algorithm is actually true.)

— The algorithmic presentation of subtyping is complete with

respect to the original if S <: Timplies— S <:T. (Everything
true is validated by the algorithm.)

N | | Eiszsis

VNI
4 %

Decision Procedures

-189%:

A decision procedure for a relation R € U is a total

function p from U to {true, false} such that p(u) = true
iffu € R.

NI | Ezsssss

VNI
4 %

Decision Procedures

Recall: A decision procedure for a relation R € U is a total

function p from U to {true, false} such that p(u) = true
iffu € R.

Is our subtype function a decision procedure?

Decision Procedures

Recall: A decision procedure for a relation R € U is a
total function p from U to {true, false} such thatp(u) =
true iffu € R.

Is our subtype function a decision procedure?

Since subtype is just an implementation of the
algorithmic subtyping rules, we have
1. if subtype(S,T) = true,then—> S<:T (hence, by
soundness of the algorithmicrules, S <: T)

2. if subtype(S,T) = false,thennot— S<:T (hence, by
completeness of the algorithmicrules, notS <: T)

|\ || B

UNJT
5 %

Decision Procedures

.189%.

Recall: A decision procedure for a relation R € U is a total

function p from U to {true, false} such that p(u) =
true iffu € R.

Is our subtype function a decision procedure?

Since subtype is just an implementation of the
algorithmic subtyping rules, we have
1. if subtype(S,T) = true,then—> S<:T (hence, by
soundness of the algorithmicrules, S <: T)
2. if subtype(S,T) = false,thennot— S<:T (hence, by
completeness of the algorithmicrules, notS <: T)
Q: What'’s missing?

NI sz

UNJT
4 %

Decision Procedures

.189%.

Recall: A decision procedure for a relation R € U is a total
function p from U to {true, false} such that p(u) = true
iffu € R.

|s our subtype function a decision procedure?

Since subtype is just an implementation of the algorithmic
subtyping rules, we have
1. if subtype(S,T) = true,then—> S<:T (hence, by
soundness of the algorithmicrules, S <: T)

2. if subtype(S,T) = false,thennot— S <:T (hence, by
completeness of the algorithmicrules, notS <: T)

Q: What'’s missing?

A: How do we know that subtype is a total function?
V[

Decision Procedures

Recall: A decision procedure for a relation R € U is a total
function p from U to {true, false} such that p(u) = true iff
U € R.

Is our subtype function a decision procedure?

Since subtype is just an implementation of the algorithmic
subtypingrules, we have

1. if subtype(S,T) = true,then =S <:T (hence, by soundness of
the algorithmicrules,S <: T)

2. if subtype(S, T) = false,thennot—> S <:T (hence, by
completeness of the algorithmicrules,notS <: T)

Q: What’s missing?

A: How do we know that subtype is a total function?

it!
Prove it} NI sz

VNI
4 %

Decision Procedures

-189%:

Recall: A decision procedure for a relation R € U is a total

function p from U to {true, false} such that p(u) = true
iffu € R.

Example:
U = {1,2,3}
= {(1,2),(2,3)}

Note that, we are saying nothing about computability.

NI iz

VNI
4 %

Decision Procedures

-189%:

Recall: A decision procedure for a relation R € U is a total
function p from U to {true, false} such that p(u) = true iff
U € R.

Example:
= {1,2,3}

= {(1,2),(2,3);

The function p whose graph is

{((1, 2), true), ((2, 3), true),
((1, 1), false), ((1, 3), false),
((2, 1), false), ((2, 2), false),
((3, 1), false), ((3, 2), false), ((3, 3), false)}

is a decision function for R.

NIl

VNI
4 %

Decision Procedures

Recall: A decision procedure for a relation R € U is a total

function p from U to {true, false} such that p(u) = true
iffu € R.

Example:
U = {1,2,3}
R = {(1,2),(2,3)}

The function p’ whose graph is
{((1, 2), true), ((2, 3), true)}

is not a decision function for R.

VNI
4 %

Decision Procedures

-189%:

Recall: A decision procedure for a relation R € U is a total

function p from U to {true, false} suchthat p(u) = true
iffu € R.

Example:
= {1, 2,3}
= {(1,2),(2,3)}

The function p”’ whose graph is
{((1, 2), true), ((2, 3), true), ((1, 3), false)}
is also not a decision function for R.

NIl

Decision Procedures (take 2)

We want a decision procedureto be a procedure.

A decision procedure for a relation R € U is a computable
total function p from U to {true, false} such that p(u) =
true iffu € R.

NIl &g

Example

= {1, 2,3}
= {(1,2),(2,3))
The function
p(x,y) = if x = 2and y = 3 then true
else if x =1and y = 2 then true
else false
whose graph is
{((1, 2), true), ((2, 3), true),
((1, 1), false), ((1, 3), false),
((2, 1), false), ((2, 2), false),
((3, 1), false), ((3, 2), false), ((3, 3), false)}

is a decision procedure for R.

NI iz

Example

U = {1,2,3}
R = {(1,2),(2,3)]
The recursively defined partial function
p(x,y) = if x = 2andy = 3thentrue

elseif x = 1andy = 2 thentrue
elseif x = 1landy = 3 then false

elsep(x,y)

NII

Example

U = {1,2,3}
R = 1(1,2),(2,3)}

The recursively defined partial function
p(x,y) = if x = 2and y = 3 then true
elseif x = landy = 2 then true
elseif x = landy = 3 then false

else p(x,y)
whose graph is
{((1, 2), true), ((2, 3), true), ((1, 3), false)}

is not a decision procedureforR. .
NIl &z

Subtyping Algorithm

This recursively defined total function is a decision
procedure for the subtype relation:

subtype(S, T) =
if T = Top, then true
elseifS = §; —= S, andT =T, —» T,
then subtype(Ty,S1) A subtype(S,, T,)
elseifS = {k;: S/ ™Yand T = {I;: T/ €'
then {lii61..1’1} C {k1161m}

A foralli € 1..n thereissomej € 1..mwith k; =1
and subtype(S;, Tj)

else false.

lllllllllllllllll

N | Bz R I8 2 FRTCPH

| Notionol lastiute of Indcrmatics |

Subtyping Algorithm

This recursively defined total function is a decision
procedure for the subtype relation:
subtype(S, T) =
if T = Top, then true
elseifS = S; — S, andT = T;{ — T,
then subtype(Ty,S1) A subtype(S,, T,)
elseif S = {k;: Sjjﬂ"m}andT = {l;: T€-"
then {lii€1..n} - {kijL.m}

A foralli € 1..n thereissomej € 1..m with k; =
and subtype (S;, Ty)

else false.
To show this, we need to prove:
1. thatit returns true wheneverS <: T, and
2. that it returns either true or falseon all inputs.

N || sz

Algorithmic Typing

NI sz

s dAe of dcrmot

Algorithmic typing

How do we implement a type checker for the lambda-
calculus with subtyping?

Given a context I' and a term t, how do we determine its
type T,suchthatI' mt: T?

AVARNSARLA AN AT0PREN

VNI
6 %

Issue

-189%:

For the typing relation, we have just one problematic rule
to deal with: subsumption rule

[Ht : S S<: T
[t : T
Q: whereis this rule really needed?

(T-SuB)

NI s

NI
5 P

Issue

For the typing relation, we have just one problematic rule
to deal with: subsumption

[t : S S<: T
[t : T

(T-SuB)

Q: whereis this rule really needed?

For applications, e.g., the term
(Ar:{x:Nat}.r.x) {x=0,y = 1}

is not typable without using subsumption.

NI
5 P

Issue

-189%:

For the typing relation, we have just one problematic rule
to deal with: subsumption

[t : S S<: T

[t : T
Q: where is this rule really needed?

(T-SuB)

For applications, e.g., the term
(Ar:{x:Nat}.r.x) {x=0,y = 1}
is not typable without using subsumption.

Where else??

N || Exszass

Issue

For the typing relation, we have just one problematic rule to
deal with: subsumption

[t : S ST

[t :
Q: where s this rule really neededar

(T-SuB)

For applications, e.g., the term
(Ar:{x:Nat}.r.x) {x=0,y = 1}
is not typable without using subsumption.

Where else??

Nowhere else!

Uses of subsumption to help typecheck applications are the
only interesting ones.

N | | Eiszsis

UNJT
4 %

Plan

.]89%.

&
P
‘.”.
V
‘\~

1. Investigate how subsumption is used in typing
derivations by looking at examples of how it can be
“pushed through” other rules

2. Use the intuitions gained from this exercise to design a
new, algorithmic typing relation that
— Omits subsumption

— Compensates for its absence by enriching the
application rule

3. Show that the algorithmic typing relation is essentially
equivalent to the original, declarative one

NI sz

Example (T-ABS)

[.x:S1 89 : S Sy <: T»p

(T-SUB)
[x:S1F sy : Tp

(T-ABS)
[F Ax:S1.89 : S1—T»

ARNSARLL 9N 2270

. - Ran
N | | Eiass s
MNotional lagtidgte of Mdcrmatics

Example (T-ABS)

[.x:S1F 89 . Sy Sy <: T»
(T-SuB)
[.x:S1 89 : Ty
(T-ARBS)
[F Ax:S1.89 : S1—T»
becomes
— (S-REFL) —
[, x:S1Fs, : S5 S1<i 5y Sy, <: T
(T-ABS) (S-ARROW)
[Ax:S;1.87 @ S1—5; S1—S8, <: 81—T>»

(T-Sus)

[Ax:S1.82 : S1—T»

AVARNSARAA AN LAT.ERAN

Nl 152 TR 362 B FE Pl

MNotional lagtidgte of Mdcrmatics

UNJT
5 %

Intuitions

.]89%.

These examples show that we do not need T-SUB to “enable”
T-ABS : given any typing derivation, we can construct a
derivation with the same conclusion in which T-SUB is never
used immediately before T-ABS.

What about T-APP?

We’'ve already observed that T-SUB is required for
typechecking some applications. So we expect to find that we
cannot play the same game with T-APP as we’ve done with T-
ABS.

Let’s see why.

NI sz

Example (T—Sub with T-APP on the left)

T11 <! S11 S12 < Ty

(S-ARROW)
811 S11—S12 S11—812 <t T11—T12
(T-SUB)
[F81 : T11—T12 [— 89 @ Tq1
(T-AppP)
81 89 @ T1o
becomes
[-89 : T11 T11 < S11
(T-SUB)
[~ S1 - S11—S12 [+ S> . S11
(T-AppP)
[Fs1 89 . S1p S12 <! T1o
(T-SUB)

[ms81 89 : Tqo

.-_..:.-‘A "W LArienam
N | B RS2 ER PR
onod I e ormoatics

osoncd lauidate of IWormot

Example (T—Sub with T-app on the rigP

[89 : T» T <! Tq11

(T-SuB)
[=81 : T11—T12 [89 @ Tq1
(T-ApP)
[81 89 @ T1o
becomes
(S-REFL)
To <: T11 T1o <: T1o
(S-ARROW)
[= s1 + T11—T12 T11—T12 < Tro—Ti2
(T-SUB)
[81 : To—Too [89 : To

(T-APP)
[F81 89 @ Tqo

N | | Eiass s

MNotional lagtidgte of Mdcrmatics

Observations

So we’ve seen that uses of subsumption can be “pushed”

from one of immediately before T-APP’s premises to the
other, but cannot be completely eliminated.

Example (nested uses of T-Sub) %

[Fs:S S<:U

(T-SuUB)

[s : U U<: T

(T-SuB)

[Fs : T

[‘l'llﬁﬁxmxm

Example (nested uses of T-Sub)

[s :S S<L: U
(T-SUB)
[Fs: U U<: T
(T-SuB)
[Fs: T
becomes
S<:U U<: T
(S-TRANS)
[s : S ST
(T-SuB)
[Fs: T

[‘l'llﬁﬁxmxm

Summary

What we’ve learned:

— Uses of the T-Sub rule can be “pushed down” through typing
derivations until they encounter either

1. ause of T-App or
2. the root of the derivation tree.

— In both cases, multiple uses of T-Sub can be coalesced into a
single one.

N | Bz R I8 2 FRTCPH

| Notionol lastiute of Indcrmatics |

Summary

What we’ve learned:

— Uses of the T-Sub rule can be “pushed down” through typing
derivations until they encounter either

1. ause of T-App or
2. the root of the derivation tree.

— In both cases, multiple uses of T-Sub can be collapsed into a
single one.

This suggests a notion of “normal form” for typing
derivations, in which there is

— exactly one use of T-Sub before each use of T-App
— one use of T-Sub at the very end of the derivation

NIl

— no uses of T T-Sub anywhere else.

B2 RGP B FE P

Algorithmic Typing

The next step is to “build in” the use of subsumption in application
rules, by changing the T-App rule to incorporate a subtyping
premise.

[t1 : T11—T1o [=ty : T - Ty < T11
[Ft1 to: Tpo

Given any typing derivation, we can now

1. normalize it, to move all uses of subsumption to either just
before applications (in the right-hand premise) or at the very
end

2. replace uses of T-App with T-SUB in the right-hand premise
by uses of the extended rule above

This vyields a derivation in which there is just one use of

subsumption, at the very end!
[

Minimal Types

But... if subsumption is only used at the very end of
derivations, then it is actually not needed in order to show
that any term is typable!

It is just used to give more types to terms that have already
been shown to have a type.

In other words, if we dropped subsumption completely (after
refining the application rule), we would still be able to give
types to exactly the same set of terms — we just would not
be able to give as many types to some of them.

If we drop subsumption, then the remaining rules will assign a
unique, minimal type to each typable term.

For purposes of building a typechecking algorithm, this is
enough.

N | I 152 86 2 B 0P
[Moticoncl lactivate of Mdormotics

Final Algorithmic Typing Rules

x:Tel
(TA-VAR)
[x: T
[.x: Ty tr : T
T (TA-ABS)

[b Ax:T1.tp : T1—T»

[bty : Ty T1 =T11—T1o [bty : To > To <: Tq1
[ty tr : Too

(TA-APp)
foreachi [k t; : T;
(TA-RcD)
[{11=t1 . 1,,=t,,} . {11 Ty .. ln:Tn}
[t; : R Ri =1{11:T1...1,:T,}
S S (TA-ProJ)

r|‘>t1.l,' : T

ARNSARLL 9N 2270

. - Ran
N | | Eiass s
MNotional lagtidgte of Mdcrmatics

3> @
Completeness of the algorithmic ruIe

-189%:

Theorem [Minimal Typing]: fI' - t: T, thenI' = t : S for
someS <: T.

NI | Ezsssss

@
Completeness of the algorithmic rule

Theorem [Minimal Typing]: If ' -t : T, then I' = t: S for
someS <: T.

Proof: Induction on typing derivation.

(N.b.: All the messing around with transforming
derivations was just to build intuitions and decide what
algorithmic rules to write down and what property to
prove: the proof itself is a straightforward induction on
typing derivations.)

NI sz

Meets and Joins

NIIE

LAl L LS)

l.Lfl!ﬂ#BiRFﬁ

VNI
4 %

Adding Booleans

-189%:

Suppose we want to add booleans and conditionals to the
language we have been discussing.

For the declarative presentation of the system, we just

add in the appropriate syntactic forms, evaluation rules,
and typing rules.

[- true : Bool (T-TRUE)

[- false : Bool (T-FALSE)

[- t1 : Bool [Ftr : T [ty : T
| —if t; then t, else t3 : T

('T-1r)

NI iz

A Problem with Conditional Expressions %f,

For the algorithmic presentation of the system, however,
we encounter a little difficulty.

What is the minimal type of

if true then {x = true,y = false}else {x = true,z = ture}

llllllllllllllllllll

VNI
4 %

The Algorithmic Conditional Rule

-189%:

More generally, we can use subsumption to give an
expression

if t; then t, else t;
any type that is a possible type of both t, and t5

So the minimal type of the conditional is the /east
common supertype (or join) of the minimal type of t, and
the minimal type of t;.

[t1 : Bool [ty : T [B t3 : T3

('T-1r)
[» if t{ then tp else t3 : Ty V T3

lllllllllllllllll

rQI|@4mm4mR%

| Notionol lastiute of Indcrmatics |

The Algorithmic Conditional Rule

More generally, we can use subsumption to give an
expression

if t; then t, else t;
any type that is a possible type of both t, and t5

So the minimal type of the conditional is the /east
common supertype (or join) of the minimal type of t, and
the minimal type of t;.

[» t1 : Bool [bty : T [b t3 : T3

('T-1r)
[» if t1{ then tp else t3 : Tp V T3

Q: Does such a type exist for every T, and T;??

NI iz

NI
4 P

Existence of Joins

-189%:

Theorem: For every pair of types S and T, thereis a type]
such that

1. S <!]
2. T <:]
3. If KisatypesuchthatS <: KandT <: K, then] <: K.

l.e.,] is the smallest type that is a supertype of both
Sand T.

How to proveiit?

N || Exszass

Examples

What are the joins of the following pairs of types?

{x:Bool, y: Bool} and {y: Bool, z: Bool}?

{x:Bool} and {y: Bool}?

{x:{a: Bool,b: Bool}} and {x:{b: Bool, c: Bool}, y: Bool}?
{} and Bool?

{x:{}} and {x: Bool}?

Top — {x:Bool} and Top — {y: Bool}?

N O U1 s WD

{x:Bool} — Top and {y: Bool} — Top?

UNJT
5 %

Meets

.]89%.

To calculate joins of arrow types, we also need to be able
to calculate meets (greatest lower bounds)!

Unlike joins, meets do not necessarily exist.

E.g., Bool — Bool and {} have no common subtypes, so
they certainly don’t have a greatest one!

However...

NI sz

Existence of Meets

Theorem: For every pair of types Sand T, if there is any type N
suchthat N <:Sand N <: T, then thereisatype M such that

1. M <:S
2. M <:T
3. If O isatypesuchthat O <:Sand O <:T,thenO <:M.

i.e., M (when it exists) is the largest type that is a subtype
of both Sand T.

N || Exszass

Existence of Meets

Theorem: For every pairof types S and T, if thereis anytype N such that
N <:SandN <:T,thenthereisa type M such that

1. M <:S
2. M <:T
3. IfO isatypesuchthatO <:SandO <:T, thenO <:M.

i.e., M (when it exists) is the largest type that is a subtype of
both S and T.

Jargon: In the simply typed lambda calculus with subtyping,

records, and booleans...
> The subtype relation has joins
» The subtype relation has bounded meets

|\ || B

Examples

What are the meets of the following pairs of types?

{x:Bool, y: Bool} and {y: Bool, z: Bool}?

{x:Bool} and {y: Bool}?

{x:{a: Bool,b: Bool}} and {x:{b: Bool, c: Bool}, y: Bool}?
{} and Bool?

{x:{}} and {x: Bool}?

Top — {x:Bool} and Top — {y: Bool}?

N O U1 s WD

{x:Bool} — Top and {y: Bool} — Top?

Calculating Joins

([Bool if S=T = Bool

M1—J» if S=S1—5» T=T1—=T»
S \NTi =M1 S, VTy=1Jp

{j/:Jl l€1.9} if § = {kasj jE1..mY

SVT = .
< T — {li:Ti l€1..n}
{J/ IEl..q} - {kj j€1..m} N {11 i€1..n}
S; VT;=1J; foreach jj=k;j =1,
| Top otherwise

AVARNSARAA AN LAT.ERAN
r—y —a—

E NP TR
Notional lagtivgte of Iormatics

Calculating Meets

SAT =
(s if T = Top
T if S= Top
Bool if S=T = Bool
J1—M> if S=S51—95 T=T1—T»

S1VTi=J1 S ATr=M
{ITI/:M/ I€1..q} If q — {kij j€1..m}
T — {lI:TI i€1..n}
{ml I€1..q} _ {kj j€1..m} U {1i i€1..n}
S; NT; =M for each m) = kj = 1;

M) = S; If m; = k; occurs only in S
M, =T; if m; = 1; occursonly in T
fail otherwise

AVARNSAREL NN 23 P LRRAN
= e

E NP TR
Notional lagtivgte of Iormatics

Homework®©

* Read and digest chapter 16 & 17

e HW#1: 16.2.5
e HWH#2: Exercises on Slide p107 & P 111

NI s

