
Chapter 21: Metatheory of Recursive Types 

Induction and Coinduction

Finite and Infinite Types/Subtyping


Membership Checking




Review of Chapter 20 



Recursive Types 

•  Lists

NatList = <nil:Unit, cons:{Nat, NatList}> 

Infinite Tree 



NatList = µX. <nil:Unit, cons:{Nat,X}>




This means that let NatList be the infinite type 
satisfying the equation:




 X = <nil:Unit, cons:{Nat, X}>.




•  Hungry Functions: accepting any number of 
numeric arguments and always return a new 
function that is hungry for more



Hungry = µA. Nat→A






•  Streams: consuming an arbitrary number of unit 
values, each time return- ing a pair of a number 
and a new stream


       Stream = µA. Unit→ {Nat, A};

       (Process = µA. Nat→ {Nat, A})



 



•  Objects


  Counter = µC. {get:Nat, inc:Unit→C, dec:Unit→C}






•  Recursive Values from Recursive Types



   F = µA.A→T 



   fixT = λf:T→T. (λx:(µA.A→T). f (x x)) 

                       (λx:(µA.A→T). f (x x))

   (Breaking the strong normalizing property:

    diverge = λ_:Unit. fixT (λx:T. x) becomes typable) 



•  Untyped Lambda-Calculus: we can embed the whole 
untyped lambda-calculus—in a well-typed way—into a 
statically typed language with recursive types. 


     D= µX.X→X;



    We can extend it to include features like numbers.



     D= µX. <nat:Nat, fn:X→X> 



Relation between µX.T and its one-step 
unfolding: Two Approaches 
•  The equi-recursive approach


–  takes these two type expressions as definitionally equal—
interchangeable in all contexts— since they stand for the 
same infinite tree.


–  more intuitive, but places stronger demands on the 
typechecker.


•  2. The iso-recursive approach

–  takes a recursive type and its unfolding as different, but 

isomorphic.

–  Notationally heavier, requiring programs to be decorated 

with fold and unfold instructions wherever recursive 
types are used. 



Subtyping and Recursive Types 

•  Can we deduce 

      µX. Nat → (Even × X) <: µX. Even→ (Nat × X)

   from Even <: Nat? 



21.1 Induction and Coinduction 



Universal Set U 

U: everything in the world	

Type: a subset of U	

Inductive/Coinductive

Definition 



Generating Function 

•  Definition: A function F ∈ P(U) → P(U) is monotone 
if X ⊆ Y implies F(X) ⊆ F(Y).


•  Definition: Let X be a subset of U. 

– X is F-closed if F(X) ⊆ X.

– X is F-consistent if X ⊆ F(X). 

– X is a fixed point of F if F(X) = X. 



Exercise: Consider the following generating function 
on the three-element universe U={a, b, c}:



E1(∅) = {c} 


E1({a}) = {c} 


E1({b}) = {c} 


E1({c}) = {b, c}


E1({a,b}) = {c} 


E1({a, c}) = {b, c} 


E1({b, c}) = {a, b, c} 


E1({a, b, c}) = {a, b, c}


Q: Which subset is E1-closed, E1-consistent? 



Knaster-Tarski Theorem (1955) 

Theorem 

•  The intersection of all F-closed sets is the least 

fixed point of F. 

•  The union of all F-consistent sets is the greatest 

fixed point of F. 

Definition: The least fixed point of F is written µF. 

The greatest fixed point of F is written νF. 



Exercise: Consider the following generating function 
on the three-element universe U={a, b, c}:



E1(∅) = {c} 


E1({a}) = {c} 


E1({b}) = {c} 


E1({c}) = {b, c}


E1({a,b}) = {c} 


E1({a, c}) = {b, c} 


E1({b, c}) = {a, b, c} 


E1({a, b, c}) = {a, b, c}


Q: What are µE1 and νE1? 



Exercise: Suppose a generating function E2 on the 
universe {a, b, c} is defined by the following inference 
rules:









Q: Write out the set of pairs in the relation E2 
explicitly, as we did for E1 above. List all the E2-closed 
and E2-consistent sets. What are µE2 and νE2? 



Principles of Induction/Coinduction 

Corollary:

•  Principle of induction: 

        If X is F-closed, then µF ⊆ X. 

•  Principle of coinduction: 

        If X is F-consistent, then X ⊆ νF. 

The induction principle says that any property whose characteristic set

is closed under F is true of all the elements of the inductively defined set µF.



The coinduction principle, gives us a method for establishing that 

an element x is in the coinductively defined set νF. 



21.2 Finite and Infinite Types 

To instantiate the general definitions of 
greatest fixed points and the coinductive 

proof method with the specifics of 
subtyping. 



Tree Type 

Definition: A tree type (or, simply, a tree) is a partial function 

T ∈ {1,2}∗ ⇀ {→, ×,Top} satisfying the following constraints:

•  T(•) is defined; 

•  if T(π,σ) is defined then T(π) is defined; 

•  if T(π) =→ or T(π) = × then T(π,1) and T(π,2) are defined; 

•  if T(π) = Top then T(π,1) and T(π,2) are undefined.




Note: T(.) = Top 



Definition: A tree type T is finite if dom(T) is finite. 
The set of all tree types is written T; the subset of 
all finite tree types is written Tf .



Exercise: Following the ideas in the previous 
paragraph, suggest a universe U and a generating 
function F ∈ P(U) → P(U) such that the set of finite 
tree types Tf is the least fixed point of F and the 
set of all tree types T is its greatest fixed point. 
 



21.3 Subtyping 



Finite Subtyping 

Definition: Two finite tree types S and T are in the 
subtype relation (“S is a subtype of T”) if (S,T) ∈ µSf , 
where the monotone function 



  Sf ∈ P(T f ×T f ) → P(T f ×T f ) 



is defined by 



  Sf(R) = {(T,Top) | T ∈ T f } 

         ∪ {(S1×S2,T1×T2) | (S1,T1), (S2,T2) ∈ R} 

         ∪ {(S1→S2,T1→T2) | (T1,S1), (S2,T2) ∈ R}. 



Inference Rules




T <: Top 




S1 <: T1  S2 <: T2 

------------------


S1×S2 <: T1×T2




T1 <: S1 S2 <: T2 

-------------------

S1→S2 <: T1→T2







Infinite Subtyping 

Definition: Two (finite or infinite) tree types S and T 
are in the subtype relation (“S is a subtype of T”) if 
(S,T) ∈ νS, where the monotone function 



  S ∈ P(T ×T  ) → P(T ×T  ) 



is defined by 



  S(R) = {(T,Top) | T ∈ T  } 

         ∪ {(S1×S2,T1×T2) | (S1,T1), (S2,T2) ∈ R} 

         ∪ {(S1→S2,T1→T2) | (T1,S1), (S2,T2) ∈ R}. 



Transitivity 

Definition: A relation R ⊆U×U is transitive if R is 
closed under the monotone function 

   TR(R) = {(x,y) | ∃z ∈ U. (x,z), (z,y) ∈ R},

i.e., if TR(R) ⊆ R.



Lemma: Let F ∈ P(U×U) →P(U×U) be a monotone 
function. If TR(F(R)) ⊆ F(TR(R)) for any R ⊆U×U, 
then νF is transitive.



Theorem: νS is transitive. 



A Digression on Transitivity 

The possibility of giving a declarative presentation 
with the rule of transitivity turns out to be a 
consequence of a “trick” that can be played with 
inductive, but not coinductive, definitions. 

•  The union of two sets of rules, when applied 

inductively, generates the least relation that is 
closed under both sets of rules separately. 


•  Adding transitivity to the rules generating a 
coinductively defined relation always gives us a 
degenerate relation.







21.5 Membership Checking 

Given a generating function F on some 
universe U and an element x ∈ U, check 

whether or not x falls in νF. 



Invertible Generating Function 

Definition: A generating function F is said to be 
invertible if, for all x ∈ U, the collection of sets

               Gx ={X ⊆ U | x ∈ F(X)} 

either is empty or contains a unique member that is 
a subset of all the others.





We will consider invertible generating function in the 
rest of this chapter. 



F-Supported/F-Ground 

When F is invertible, we define:







Definition: An element x is F-supported if 
supportF(x)↓; otherwise, x is F- unsupported. 

An F-supported element is called F-ground if 
supportF(x) = ∅.

 



Support Graph 

•  An Example of the support graph of E function on 
{a,b,c,d,e,f,g,h,i} 

x is in the greatest fixed point iff no unsupported element is 
reachable from x in the support graph. 



Greatest Fixed Point 

Definition: Suppose F is an invertible generating 
function. Define the boolean-valued function gfpF (or 
just gfp) as follows:







Theorem (Sound): 

1.  If gfpF(X) = true, then X ⊆ νF. 

2.  2. If gfpF(X) = false, then X ⊆ νF.


Theorem (Terminate): If reachableF(X) is finite, then 
gfpF(X) is defined. Consequently, if F is finite state, 
then gfpF(X) terminates for any finite X ⊆U. 



/ 



More Efficient Algorithms 



Inefficiency 

Recomputation of “support” 


   gfp({a})

= gfp({a, b, c}) 

= gfp({a, b, c, e, f ,g}) 

= gfp({a, b, c, e, f ,g,d}) 

= true 

support(a) is recomputed four times! 



A More Efficient Algorithm 

Definition: Suppose F is an invertible generating 
function. Define the function gfpa as follows 

Example: 
Tail-recursion 



Variation 1 

Definition: A small variation on gfps has the 
algorithm pick just one element at a time from X 
and expand its support. The new algorithm is called 
gfps 



Variation 2 

Definition: Given an invertible generating function F, 
define the function gfpt as follows: 



Regular Trees 

If we restrict ourselves to regular types, 
then the sets of reachable states will be 

guaranteed to remain finite and the subtype 
checking algorithm will always terminate. 



Regular Trees 

Definition: A tree type S is a subtree of a tree type 
T if S = λσ. T(π,σ) for some π.



Definition: A tree type T ∈ T is regular if 
subtrees(T) is finite.



Examples:

•  Every finite tree type is regular.

•  T = Top x (Top x (Top x …)) is regular.

•  T = B x (A x (B x (A x (A x (B x (A x (A x (A x (B 
…) is irregular. 



Proposition: The restriction of the generating function S 
to regular tree types is finite state.



Proof: We need to show that for any pair (S,T) of 
regular tree types, the set reachable(S,T) is finite. 

Since reachable (S,T) ⊆ subtrees(S) ×subtrees(T); the 
latter is finite as S and T are regular. 



µ-Types 

Establishes the correspondence between 
subtyping on µ-expressions and the 

subtyping on tree types 



µ-Types: 

Definition: Let X range over a fixed countable set 
{X1,X2,...} of type variables. The set of raw µ-types 
is the set of expressions defined by the following 
grammar:











Definition: A raw µ-type T is contractive (and called 
µ-types) if, for any subexpression of T of the form 
µX.µX1...µXn.S, the body S is not X.    

Tm 



Finite Notation for Infinite Tree Types 

Definition: The function treeof , mapping closed µ-
types to tree types, is defined inductively as follows: 





Subtyping Correspondence:  
µ-Types and Tree Types 
Definition: Two µ-types S and T are said to be in the 
subtype relation if (S,T) ∈ νSm, where the monotone 
function Sm ∈ P(Tm×Tm)→P(Tm×Tm) is defined by:













Theorem: Let (S,T) ∈ Tm×Tm. Then (S,T) ∈ νSm iff 
(treeof S, treesof T) ∈ νS. 



Exercise: What is the support for Sm? 



Subtyping Algorithm for µ-Types 

Instantiating gfpt for subtyping relation on µ-Types. 

Terminate? 



An Digressed (Exponential) Subtyping 
Algorithm 



Summary 

•  We study the theoretical foundation of type 
checkers (subtyping) for equi-recursive types.

–  Induction/coinduction & proof principles

–  Finite and Infinite Types/Subtyping

–  Membership checking algorithm




Homework 


