
Chapter 21: Metatheory of Recursive Types

Induction and Coinduction

Finite and Infinite Types/Subtyping

Membership Checking

Review of Chapter 20

Recursive Types

•  Lists

NatList = <nil:Unit, cons:{Nat, NatList}>

Infinite Tree

NatList = µX. <nil:Unit, cons:{Nat,X}>

This means that let NatList be the infinite type
satisfying the equation:

 X = <nil:Unit, cons:{Nat, X}>.

•  Hungry Functions: accepting any number of
numeric arguments and always return a new
function that is hungry for more

Hungry = µA. Nat→A

•  Streams: consuming an arbitrary number of unit
values, each time return- ing a pair of a number
and a new stream

 Stream = µA. Unit→ {Nat, A};

 (Process = µA. Nat→ {Nat, A})

•  Objects

 Counter = µC. {get:Nat, inc:Unit→C, dec:Unit→C}

•  Recursive Values from Recursive Types

 F = µA.A→T

 fixT = λf:T→T. (λx:(µA.A→T). f (x x))

 (λx:(µA.A→T). f (x x))

 (Breaking the strong normalizing property:

 diverge = λ_:Unit. fixT (λx:T. x) becomes typable)

•  Untyped Lambda-Calculus: we can embed the whole
untyped lambda-calculus—in a well-typed way—into a
statically typed language with recursive types.

 D= µX.X→X;

 We can extend it to include features like numbers.

 D= µX. <nat:Nat, fn:X→X>

Relation between µX.T and its one-step
unfolding: Two Approaches
•  The equi-recursive approach

–  takes these two type expressions as definitionally equal—
interchangeable in all contexts— since they stand for the
same infinite tree.

–  more intuitive, but places stronger demands on the
typechecker.

•  2. The iso-recursive approach

–  takes a recursive type and its unfolding as different, but

isomorphic.

–  Notationally heavier, requiring programs to be decorated

with fold and unfold instructions wherever recursive
types are used.

Subtyping and Recursive Types

•  Can we deduce

 µX. Nat → (Even × X) <: µX. Even→ (Nat × X)

 from Even <: Nat?

21.1 Induction and Coinduction

Universal Set U

U: everything in the world	

Type: a subset of U	

Inductive/Coinductive

Definition

Generating Function

•  Definition: A function F ∈ P(U) → P(U) is monotone
if X ⊆ Y implies F(X) ⊆ F(Y).

•  Definition: Let X be a subset of U.

– X is F-closed if F(X) ⊆ X.

– X is F-consistent if X ⊆ F(X).

– X is a fixed point of F if F(X) = X.

Exercise: Consider the following generating function
on the three-element universe U={a, b, c}:

E1(∅) = {c}

E1({a}) = {c}

E1({b}) = {c}

E1({c}) = {b, c}

E1({a,b}) = {c}

E1({a, c}) = {b, c}

E1({b, c}) = {a, b, c}

E1({a, b, c}) = {a, b, c}

Q: Which subset is E1-closed, E1-consistent?

Knaster-Tarski Theorem (1955)

Theorem

•  The intersection of all F-closed sets is the least

fixed point of F.

•  The union of all F-consistent sets is the greatest

fixed point of F.

Definition: The least fixed point of F is written µF.

The greatest fixed point of F is written νF.

Exercise: Consider the following generating function
on the three-element universe U={a, b, c}:

E1(∅) = {c}

E1({a}) = {c}

E1({b}) = {c}

E1({c}) = {b, c}

E1({a,b}) = {c}

E1({a, c}) = {b, c}

E1({b, c}) = {a, b, c}

E1({a, b, c}) = {a, b, c}

Q: What are µE1 and νE1?

Exercise: Suppose a generating function E2 on the
universe {a, b, c} is defined by the following inference
rules:

Q: Write out the set of pairs in the relation E2
explicitly, as we did for E1 above. List all the E2-closed
and E2-consistent sets. What are µE2 and νE2?

Principles of Induction/Coinduction

Corollary:

•  Principle of induction:

 If X is F-closed, then µF ⊆ X.

•  Principle of coinduction:

 If X is F-consistent, then X ⊆ νF.

The induction principle says that any property whose characteristic set

is closed under F is true of all the elements of the inductively defined set µF.

The coinduction principle, gives us a method for establishing that

an element x is in the coinductively defined set νF.

21.2 Finite and Infinite Types

To instantiate the general definitions of
greatest fixed points and the coinductive

proof method with the specifics of
subtyping.

Tree Type

Definition: A tree type (or, simply, a tree) is a partial function

T ∈ {1,2}∗ ⇀ {→, ×,Top} satisfying the following constraints:

•  T(•) is defined;

•  if T(π,σ) is defined then T(π) is defined;

•  if T(π) =→ or T(π) = × then T(π,1) and T(π,2) are defined;

•  if T(π) = Top then T(π,1) and T(π,2) are undefined.

Note: T(.) = Top

Definition: A tree type T is finite if dom(T) is finite.
The set of all tree types is written T; the subset of
all finite tree types is written Tf .

Exercise: Following the ideas in the previous
paragraph, suggest a universe U and a generating
function F ∈ P(U) → P(U) such that the set of finite
tree types Tf is the least fixed point of F and the
set of all tree types T is its greatest fixed point.

21.3 Subtyping

Finite Subtyping

Definition: Two finite tree types S and T are in the
subtype relation (“S is a subtype of T”) if (S,T) ∈ µSf ,
where the monotone function

 Sf ∈ P(T f ×T f) → P(T f ×T f)

is defined by

 Sf(R) = {(T,Top) | T ∈ T f }

 ∪ {(S1×S2,T1×T2) | (S1,T1), (S2,T2) ∈ R}

 ∪ {(S1→S2,T1→T2) | (T1,S1), (S2,T2) ∈ R}.

Inference Rules

T <: Top

S1 <: T1 S2 <: T2

S1×S2 <: T1×T2

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2

Infinite Subtyping

Definition: Two (finite or infinite) tree types S and T
are in the subtype relation (“S is a subtype of T”) if
(S,T) ∈ νS, where the monotone function

 S ∈ P(T ×T) → P(T ×T)

is defined by

 S(R) = {(T,Top) | T ∈ T }

 ∪ {(S1×S2,T1×T2) | (S1,T1), (S2,T2) ∈ R}

 ∪ {(S1→S2,T1→T2) | (T1,S1), (S2,T2) ∈ R}.

Transitivity

Definition: A relation R ⊆U×U is transitive if R is
closed under the monotone function

 TR(R) = {(x,y) | ∃z ∈ U. (x,z), (z,y) ∈ R},

i.e., if TR(R) ⊆ R.

Lemma: Let F ∈ P(U×U) →P(U×U) be a monotone
function. If TR(F(R)) ⊆ F(TR(R)) for any R ⊆U×U,
then νF is transitive.

Theorem: νS is transitive.

A Digression on Transitivity

The possibility of giving a declarative presentation
with the rule of transitivity turns out to be a
consequence of a “trick” that can be played with
inductive, but not coinductive, definitions.

•  The union of two sets of rules, when applied

inductively, generates the least relation that is
closed under both sets of rules separately.

•  Adding transitivity to the rules generating a
coinductively defined relation always gives us a
degenerate relation.

21.5 Membership Checking

Given a generating function F on some
universe U and an element x ∈ U, check

whether or not x falls in νF.

Invertible Generating Function

Definition: A generating function F is said to be
invertible if, for all x ∈ U, the collection of sets

 Gx ={X ⊆ U | x ∈ F(X)}

either is empty or contains a unique member that is
a subset of all the others.

We will consider invertible generating function in the
rest of this chapter.

F-Supported/F-Ground

When F is invertible, we define:

Definition: An element x is F-supported if
supportF(x)↓; otherwise, x is F- unsupported.

An F-supported element is called F-ground if
supportF(x) = ∅.

Support Graph

•  An Example of the support graph of E function on
{a,b,c,d,e,f,g,h,i}

x is in the greatest fixed point iff no unsupported element is
reachable from x in the support graph.

Greatest Fixed Point

Definition: Suppose F is an invertible generating
function. Define the boolean-valued function gfpF (or
just gfp) as follows:

Theorem (Sound):

1.  If gfpF(X) = true, then X ⊆ νF.

2.  2. If gfpF(X) = false, then X ⊆ νF.

Theorem (Terminate): If reachableF(X) is finite, then
gfpF(X) is defined. Consequently, if F is finite state,
then gfpF(X) terminates for any finite X ⊆U.

/

More Efficient Algorithms

Inefficiency

Recomputation of “support”

 gfp({a})

= gfp({a, b, c})

= gfp({a, b, c, e, f ,g})

= gfp({a, b, c, e, f ,g,d})

= true

support(a) is recomputed four times!

A More Efficient Algorithm

Definition: Suppose F is an invertible generating
function. Define the function gfpa as follows

Example:
Tail-recursion

Variation 1

Definition: A small variation on gfps has the
algorithm pick just one element at a time from X
and expand its support. The new algorithm is called
gfps

Variation 2

Definition: Given an invertible generating function F,
define the function gfpt as follows:

Regular Trees

If we restrict ourselves to regular types,
then the sets of reachable states will be

guaranteed to remain finite and the subtype
checking algorithm will always terminate.

Regular Trees

Definition: A tree type S is a subtree of a tree type
T if S = λσ. T(π,σ) for some π.

Definition: A tree type T ∈ T is regular if
subtrees(T) is finite.

Examples:

•  Every finite tree type is regular.

•  T = Top x (Top x (Top x …)) is regular.

•  T = B x (A x (B x (A x (A x (B x (A x (A x (A x (B
…) is irregular.

Proposition: The restriction of the generating function S
to regular tree types is finite state.

Proof: We need to show that for any pair (S,T) of
regular tree types, the set reachable(S,T) is finite.

Since reachable (S,T) ⊆ subtrees(S) ×subtrees(T); the
latter is finite as S and T are regular.

µ-Types

Establishes the correspondence between
subtyping on µ-expressions and the

subtyping on tree types

µ-Types:

Definition: Let X range over a fixed countable set
{X1,X2,...} of type variables. The set of raw µ-types
is the set of expressions defined by the following
grammar:

Definition: A raw µ-type T is contractive (and called
µ-types) if, for any subexpression of T of the form
µX.µX1...µXn.S, the body S is not X.

Tm

Finite Notation for Infinite Tree Types

Definition: The function treeof , mapping closed µ-
types to tree types, is defined inductively as follows:

Subtyping Correspondence:
µ-Types and Tree Types
Definition: Two µ-types S and T are said to be in the
subtype relation if (S,T) ∈ νSm, where the monotone
function Sm ∈ P(Tm×Tm)→P(Tm×Tm) is defined by:

Theorem: Let (S,T) ∈ Tm×Tm. Then (S,T) ∈ νSm iff
(treeof S, treesof T) ∈ νS.

Exercise: What is the support for Sm?

Subtyping Algorithm for µ-Types

Instantiating gfpt for subtyping relation on µ-Types.

Terminate?

An Digressed (Exponential) Subtyping
Algorithm

Summary

•  We study the theoretical foundation of type
checkers (subtyping) for equi-recursive types.

–  Induction/coinduction & proof principles

–  Finite and Infinite Types/Subtyping

–  Membership checking algorithm

Homework

