N || Sz

Chapter 22: Type Reconstruction (Type Inference)

Calculating a Principal Type for a Term
Constraint-based Typing
Unification and Principle Types
Extension with let-polymorphism

Type Variables and Type Substitution N | | sz

e Type variable

X > X

e Type substitution: finite mapping from type
variables to types.

o =[X = Bool, Y & U]

dom(o) = {X, Y}
range(0) = {Bool, U}

Note: the same variables can be in both the domain and the range.
[X = Bool, Y = X—X]

NIl Ezsass

e Application of type substitution to a type:

(%) _ {TiﬂXHUEU
X if X is not in the domain of o
o (Nat) = Nat
o (Bool) = Bool
o(Ti—Tz) = oT;—-0T>

e Type substitution composition

o X— o(T) foreach (X—T) ey
Y=1 x o7 for each (X — T) € o with X ¢ dom(y)

NI

e Type substitution on contexts:
- o(x1:T1,...,xn:Tn) = (x1: O TL,... ,xn: O Tn).

e Substitution on Terms:

- A substitution is applied to a term t by applying it to
all types appearing in annotations in t.

e Theorem [Preservation of typing under type
substitution]: If O is any type substitution and
[-t:T,then ol - ot: OT.

Two Views of Type Variables

e View 1: “Are all substitution instances of t well
typed?” That is, for every o, do we have

ol - ot:T

for some T?
- E.g., Af:T=T. Aa:T. f (f a)

e View 2. "Is some substitution instance of t well
typed?” That is, can we find a 0 such that

ol - ot:T

for some T?
- E.g., Af:Y. Aa:X. f (f a)

Type Reconstruction \ || Rt

Definition: Let [be a context and t a term. A
solution for ([,1) is a pair (0,T) such that

ol - ot:T.

x:TeTl (T-VAR)
I'x:T
I)x:Ty -t2 : T
[AXiTL. € : T1—T2 (-ABS)
'ty : Ty1—-T 't : T
1 11— 112 2 11 (T-APP)
I'=t) t2 : Ty2

NIIE

EXAMPLE: LetI' = f:X,a:Yand t = f a. Then

([X - Y—=Nat], Nat) ([X—=Y=2Z], Z)
([X —Y—-Z, Z~— Nat], 2) ([X = Y—=Nat—Nat], Nat—Nat)
([X — Nat—Nat, Y — Nat], Nat—Nat)

are all solutions for (T, t).

Constraint-based Typing N | | ez

The constraint typing relation
T Ht+:TIlC
is defined as follows.

x:TeTl (CT-VAR)
-VAR
F'=x:T |g {}
[x:Ty -t :Te |x C
(CT-ABS)

'=Ax:Ty.t2 t: T1—=Tr |x C

't : Ty |x, G =t :Te [x, O
X1NXo=X1NnFV(T2) =XonFVT;) =&
X¢& Xy, X2, Ty, To, Cy, Co, T, £, 0r to
C=CLuCuiT) =Tr—X}

=t t2 ' X |Ixyuxeuxy €

(CT-App)

7 R 445 B S0P

woncd lauibate of comot:

NII

e Extended with Boolean Expression

[~ true : Bool |g {} (CT-TRUE)
[+ false : Bool |z {} (CT-FALSE)

-1t : T |X1 C
't 1 Ty |x2C2 I'-1t3 : T3 |X3C3
X1, X2, X3 nonoverlapping
C' = CGuGuC3uiT = BOO],Tg = T3}
[Fift) thentyelset; : T |x,uxoux; C
(CT-IF)

Definition: Suppose that [+ t: S| C. A solution for
(I",t,5,C) is a pair (0,T) such that o satisfies C and
oS =T.

Recall:

Definition: Let [be a context and t a term. A

solution for ([,t) is a pair (0,T) such that ol
ot:T.

What are the relation between between these two solutions?

Theorem [Soundness of constraint typing]: Suppose
that [~t: T | C. If (0,T) is a solution for
(I,t,T,C), then it is also a solution for ([,1).

Proof. By induction on constraint typing derivation.
e Case CT-Var.

x:Tel
I'x:T |g {}

(CT-VAR)

(o,T)isasolution=> ocT=T =2>0l+x1 T

e

e Case CT-Abs.

['x:Ty -t i T2 |[x C
'EAXx:Ty.t2 : T1—=T2 |x C

(CT-ABS)

(0,T) is a solution = O meets C
= (0, OT,) is a solution to the above
=2 (0, oT,)is a solution to ', x;T, - t,: T,
=2 (0, oT,> OT,)is asolutionto ' Ax;T. t,: T,

7 1 865 57 22

Notional lactidate of Mormot:

NII

e Case CT-App

't : Ty |x, G =t :Te |[x, O
X1iNXo=X1NnFV(T2) =XonNnFV(T;) =0
X¢& Xy, Xo, Ty, To, Cy, Co, T, £, 0r to
C'=CiuCuiT| =Tr—X}

[~ t) to ¢ X |X1UX3UlX} C’

(CT-App)

(0, T) is a solution = -+

NI iz

Theorem [Completeness of constraint typing]:
Suppose [— t:S | C.

If (0,T) is a solution for ([T ,t) and dom(0) NX= O,
then there is some solution (¢',T) for (I ,1,S,C) such
that 0'\X = O.

Proof: By induction on the given constraint typing
derivation.

(Think and read the textbook)

Unification N || sz

e Idea from Hindley (1969) and Milner (1978) for
calculating "best” solution to constraint sets.

Definition: A substitution O is less specific (or more
general) than a substitution o', written o C o', if
o'=y © 0O

for some substitution 7.

Definition: A principal unifier (or sometimes most
general unifier) for a constraint set C is a
substitution 0 that satisfies C and such that 0 C
o' for every substitution o' satisfying C.

NI iz

Exercise: Write down principal unifiers (when they
exist) for the following sets of constraints:

o {X = Nat, ¥ = X=X}

o {Nat—Nat = XV}

o {X—Y =Y—>Z, Z = U>W}
e {Nat = Nat—Y}

e {Y = Nat—Y}

o {}

Unification Algorithm

NIIE

unify(C)

if C = @, then []
elselet {IS=T}uC" =Cin
ifS=T
then unify(C’)
elseif S = Xand X ¢ FV(T)

No cyclic

then unify([X — T]C') o [X — T]

elseif T=Xand X ¢ FV(S)

then unify([X — S]C") o [X — S]
elseif S=S1—-Soand T=T,-T»
then unify(C’ U {S; =T, Sz = Ta})

else
fail

NIz

Theorem: The algorithm unify always terminates,
failing when given a non-unifiable constraint set as
input and otherwise returning a principal unifier.

Proof.

Termination: define degree of C = (number of distinct type variables,
total size of types).

Unify(C) returns a unifier: induction on the number of recursive calls of
unify. (Fact: 0 unifies [X -> TID, then 0 © [X->T] unifies {X = T}UD)

It returns a principle unifier: induction on the number of recursive
call.

Principle Types |\ || [

e If there is some way to instantiate the type
variables in a term, e.qg.,

Ax:X. Ay:Y. Az:Z. (x z) (Y 2)
so that it becomes typable, then there is a most
general or principal way of doing so.

A\

Unification Algorithm

Theorem: It is decidable whether ([,t) has a solution.

Implicit Type Annotation \ || [

[Mosioncl lativate of Indcrmatics |

Type reconstruction allows programmers to
completely omit type annotations on lambda-
abstractions.

Xé¢ X I'x: X+t : T [x C
' Ax.t) : X=T |XU{X} C

(CT-ABSINF)

Let-Polymorphism

e Code Duplication:

let doubleNat = A f:Nat—Nat. A a:Nat. f(f(a)) in
let doubleBool = A f:Bool—Bool. A a:Bool. f(f(a)) in
let a = doubleNat (A x:Nat. succ (succ x)) 1 in

let b = doubleBool (A x:Bool. x) false in ...Even

e One Attempt
let double = A f:X—X. Aa:X. f(f(a)) in

let a = double (A x:Nat. succ (succ x)) 1 in
let b = double (A x:Bool. x) false in -

This is not typable, since double can only be instantiated once.

N | 132 RSB S R TR

[Mossional lativate of Idormatics |

e Solution: Unfolding “let” (perform a step of

evaluation of let)

F=[x—1t)]t2 =t T

' let x=t; in t

(T-LETPOLY)

.

' [x— t;]t

.

x C

' let x=t; 1n t»

T Ix C

(CT-LETPOLY)

let double = Af. Aa. f(f(a)) in

let a = double (A x:Nat. succ (succ x)) 1 in
let b = double (A x:Bool. x) false in -

Typable!

NIl Ezsass

e Issue I: what happens when the let-bound
variable does not appear in the body:

let x = <utter garbage> in 5

\ 4

=[x t1]ty : To I'=t; : Ty
' letx=t;inty : T

(T-LETPOLY)

NIz

e Issue 2: Avoid re-typechecking when a let-variable
appear many times in let x=11 in t2.

A w pp -

Find a principle type T1 of tl.
Generalize T1 to a schema VX1...Xn.Tl.
Extend the context with (x, VX1...Xn.T1).

Each time we encounter an occurrence of x in 2, look up
its type scheme VX1...Xn.T1, generate fresh type variables
Y1...Yn to instantiate the type scheme, yielding [X1 ->

Y1,.. ., Xn -> Yn]T1, which we use as the type of x

Homework N || s

Notionol lagtivgte of Mdormatics

22.5.5 EXERCISE [RECOMMENDED, *x* +|: Combine the constraint generation and
unification algorithms from Exercises 22.3.10 and 22.4.6 to build a type-
checker that calculates principal types, taking the reconbase checker as a
starting point. A typical interaction with your typechecker might look like:

Ax:X. X;

» <fun> @ X — X
Az:ZZ. Ay:YY. z (y true);

» <fun> @ (?Xp—7X1) — (Bool1—-7Xp) — 72X
Aw:W. if true then false else w false;

» <fun> : (Bool—Bool) — Bool

Type variables with names like ?X are automatically generated. O

