
Chapter 23: Universal Types

 System F

Power of System F

Properties (Soundness, decidability,
paramertricity, impredicativity)

System F

•  First discovered by Jean-Yves Girard (1972)

•  Independently developed by John Reynolds (1974)

as polymorphic lambda-calculus

•  A natural extension of λà with a new form of

abstract and application over types:

Syntax and Evaluation

Types and Type Context

Typing

Ex.: Defining Polymorphic Functions

•  id = λX. λx:X. X

–  id : ∀X. X → X

‒  id [Nat] 0 è 0

•  double = λX. λf:X→X. λa:X. f (f a)

–  double : ∀X. (X→X) → X → X

‒  double [Nat] (λx:Nat. succ(succ(x))) 3 è 7

–  quadruple = λX. double [X→X] (double [X])

•  selfApp = λx:∀X.X→X. x [∀X.X→X] x

–  selfApp : (∀X. X→X) → (∀X. X → X)

Ex.: Polymorphic Lists

•  nil : ∀X. List X

•  cons : ∀X. X → List X → List X

•  isnil : ∀X. List X → Bool

•  head : ∀X. List X → X

•  tail : ∀X. List X → List X

•  map : ∀X. ∀Y. (X→Y) → List X → List Y

map = λX. λY. λf: X→Y.

 (fix (λm: (List X) → (List Y). λl: List X.

 if isnil [X] l then nil [Y]

 else cons [Y] (f (head [X] l)) (m (tail [X] l))))

Exercise: Can you write reverse?

Ex.: Church Encoding

•  Church encodings can be carried out in System F.

•  CBool = ∀X.X→X→X;

‒  tru = λX. λt:X. λf:X. t;

‒  fls = λX. λt:X. λf:X. f;

–  and = ?

•  CNat = ∀X. (X→X) → X → X

–  c0 = λX. λs:X→X. λz:X. Z

‒  c1= λX. λs:X→X. λz:X. s z;

‒  csucc = λn:CNat. λX. λs:X→X. λz:X. s (n [X] s z)

‒  cplus = λm:CNat. λn:CNat. λX. λs:X→X. λz:X.

 m [X] s (n [X] s z)

Ex.: Encoding Lists

•  List X = ∀R. (X→R→R) → R → R

–  nil = λX. (λR. λc:X→R→R. λn:R. n) as List X

‒  cons = λX. λhd:X. λtl:List X.

 (λR. λc:X→R→R. λn:R. c hd (tl [R] c n)) as List X;

–  isnil = λX. λl:List X.

 l [Bool] (λhd:X. λtl:Bool. false) true

–  head = λX. λl:List X.

 l [X] (λhd:X. λtl:X. hd) (diverge [X] unit)

–  sum : List Nat à Nat

 sum = … definition without using fix …?

Basic Properties of System F

Very similar to those of the simply typed λ-calculus.

Theorem [Preservation]: If Γ ⊢ t : T and t→t′, then
Γ ⊢ t′ : T.

Theorem [Progress]: If t is a closed, well-typed term,
then either t is a value or there is some t′ with t →t′.

Theorem [Normalization]: Well-typed System F terms
are normalizing.

Erasure and Type Construction

Theorem [Wells, 1994]: It is undecidable whether, given a
closed term m of the untyped lambda-calculus, there is
some well-typed term t in System F such that erase(t) = m.

Partial Erasure and Type Construction

Theorem [Boehm 1985, 1989]: It is undecidable whether,
given a closed term s in which type applications are marked
but the arguments are omitted, there is some well-typed
System F term t such that erasep(t) = s.

Type reconstruction is as hard as higher-order unification.

(But many practical algorithms have been developed)

Erasure and Evaluation Order

Theorem: If erasev(t) = u, then either (1) both t and u are
normal forms according to their respective evaluation
relations, or (2) t → t′ and u → u′, with erasev(t′) = u′.

Keep type
abstraction	

Fragments of System F

•  Rank-1 (prenex) polymorphism

–  type variables may not be instantiated with polymorphic

types

•  Rank-2 polymorphism

–  A type is said to be of rank 2 if no path from its root to

a ∀ quantifier passes to the left of 2 or more arrows.

(∀X.X→X)→Nat OK

Nat→(∀X.X→X)→Nat→Nat OK

((∀X.X→X)→Nat)→Nat X

Type reconstruction for ranks 2 and lower is decidable, and
that for rank 3 and higher of System F is undecidable.

Parametricity

•  Uniform behavior of polymorphic programs

CBool = ∀X.X→X→X;

tru = λX. λt:X. λf:X. t;

fls = λX. λt:X. λf:X. f;

(1) Tru and fls are the only two basic inhabitants of Cbool.

(2) Free Theorem:

 e.g., for reverse: ∀X. List X -> List X, we have

 map f . reverse = reverse . map f

Impredicativity

Definition. A definition (of a set, a type, etc.) is
called “impredicative” if it involves a quan- tifier
whose domain includes the very thing being defined

System F is impredicative, because the type variable
X in the type

 T = ∀X.X→X

ranges over all types, including T itself.

Russell’s paradox: let A = { x | x is not in x },

then is “A in A”?

Homework

