AVARNSARLA AN Z2ATiPRAN
SRR ERFPR

Chapter 23: Universal Types

System F
Power of System F

Properties (Soundness, decidability,
paramertricity, impredicativity)

System F N

e First discovered by Jean-Yves Girard (1972)

¢ Independently developed by John Reynolds (1974)
as polymorphic lambda-calculus

e A natural extension of A > with a new form of
abstract and application over types:

(AX.ty2) [T2] — [X = T2]t12

(AX:Tq1.t12) Vo — [X — Vo]tr2
[LXEt : To
' AX.to ¢ VX.T»

'ty : VX. T2 CNI D>
Ity [To] @ [X~ To]T1o

Syntax and Evaluation

Syntax
t = terms:
X variable
Ax:T.t abstraction
tt application
AX.t type abstraction
t [T] type application
v o= values:
Ax:T.t abstraction value
AX.t type abstraction value

!'.-:.“IA L L RN L L
N | I R85 2 R FCPR

Evaluation t—t
t) — t]
Tt — t) t

(E-ApP1)

th — t)
vy t — vy t’z

(E-Aprp2)

(Ax:Ty1.t12) vo — [X — v2]ty2 (E-APPABS)

t) — t)
ty [T2] — t] [T2]

(E-TAPP)

(AX.ty12) [T2] — [X— T2]t;2 (E-TAPPTABS)

!'I-:.“IA AN LArieRAn
ESZ NPT
MNo od by g of o s

Types and Type Context NIl

T == types:
X type variable
T-T type of functions
VX.T universal type
[= contexts:
%, empty context
[,x:T term variable binding

I, X type variable binding

Typing

T'yping
x:Tel
[=x:T
[Lx:Ty =ttt T
[AX:Ty.t2 : T —T>

'ty : Ty1—Ti2 [t ! T

NIIE

7 1 865 57 22

Notional lactidate of Mormot:

[t T

't to i Ty

Xt T
' AX.t2 : VX.T>

't : VX. T2
I'=ty [Te] @ [X=T2]Ty2

(T-VAR)

(T-ABS)

(T-Aprp)

(T-TARBS)

(T-TAppP)

Ex.: Defining Polymorphic Functions

o id=AX Ax:X. X
- id: VX. X — X
- id[Nat]0O=> 0

e double = AX. Af:X—>X. Aa:X. f (f a)
- double : VX. (X—X) > X — X
— double [Nat] (A x:Nat. succ(succ(x))) 3 = 7
- quadruple = A X. double [X—X] (double [X])

o selfApp = Ax:VX.X—=X. x [VX.X—=X] x
- selfApp : (¥X. X=X) = (¥X. X = X)

NI iz

Ex.: Polymorphic Lists |\ ||

e nil : VX. List X

e cons : VX. X — List X — List X
e isnil : VX. List X — Bool

e head : VX. List X — X

e tail : VX. List X — List X

e map : VX. VY. (X—=Y) — List X = List Y
map = AX. AY. Af: X—.
(Ax (A m: (List X) — (List Y). Al: List X.
if isnil [X] | then nil [Y]
else cons [Y] (f (head [X] 1)) (m (tail [X] 1))

G
>

Exercise: Can you write reverse? Z
@
.

Ex.: Church Encoding N | | i

e Church encodings can be carried out in System F.

e CBool = VX.X—>X—X;
— tru= AX. At X. Af:X. t;
— fls=AX. At X. Af:X. f;

- and =7

¢ CNat = VX. (X—X) > X —> X
- c0=AX. As:X—=X. Az X. Z
— Cl=AX. As:X—=X. Az:X. s Z;
— csucc = An:CNat. AX. As:X—X. Az:X.s (n [X] s 2)
— cplus = Am:CNat. An:CNat. AX. As:X—=X. Az:X.
m [X] s (n [X] s 2)

Ex.: Encoding Lists N | | &z

e List X=VR. (X»>R—R) >R — R

nil = AX. (AR. Ac:X—>R—R. An:R. n) as List X

cons = AX. Ahd:X. AtlList X.

(AR. Ac:X—R—R. An:R. ¢c hd (tl [R] c n)) as List X;
isnil = A X. Al:List X.

| [Bool] (A hd:X. A tl:Bool. false) true

head = A X. Al:List X.

| [X] (Ahd:X. Atl:X. hd) (diverge [X] unit)

sum : List Nat = Nat

sum = -*- definition without using fix ---?

Basic Properties of System F

Very similar to those of the simply typed A -calculus.

Theorem [Preservation]: If [- t: T and t—1', then
S S

Theorem [Progress]: If tis a closed, well-typed term,
then either t is a value or there is some t' with t+ —1'.

Theorem [Normalization]: Well-typed System F terms
are normalizing.

Erasure and Type Construction N | | sz s

erase(Ax:T;. to) = AX. erase(t»)
erase(t; t») = erase(t;) erase(t»)
erase(AX. to) = erase(t»)

Theorem [Wells, 1994]: It is undecidable whether, given a
closed term m of the untyped lambda-calculus, there is
some well-typed term t in System F such that erase(t) = m

Partial Erasure and Type Construction N | | Eziszsss

[Mosioncl lativate of Indcrmatics |

erasey, (X) = X
erasep(Ax:Ty. t2) = Ax:Ty. erase,(t:)
erase,(t; t2) = erasep(t)) erase,(ty)

erasep(AX. t2) AX. erasep(t2)
erase,(t; [T2]) = erasep(ty) []

Theorem [Boehm 1985, 1989]: It is undecidable whether,
given a closed term s in which type applications are marked
but the arguments are omitted, there is some well-typed
System F term t such that erasep(’r) = S.

Type reconstruction is as hard as higher-order unification.
(But many practical algorithms have been developed)

Erasure and Evaluation Order N | | s

(12 tA 882 R FE P

[Mossional lativate of Idormatics |

Keep type
abstraction
erase, (x) = X
erase,(Ax:Ty. to) = Ax. erase,(ty)
erase, (t; t») = erasey(ty) erase,(t>)

A_. erase, (tr)

erase, (AX. t»)
erasey,(ty [T2])

erase, (t,) dummyv

normal forms according to their respective evaluation
relations, or (2) t = t' and u = u', with erase (') = u'.

Theorem: If erase (1) = u, then either (1) both t and u are

Fragments of System F |\ || [

e Rank-1 (prenex) polymorphism

- type variables may not be instantiated with polymorphic
types

e Rank-2 polymorphism
- A type is said to be of rank 2 if no path from its root to
a V quantifier passes to the left of 2 or more arrows.

(VX.X—>X)—Nat OK
Nat—(VX.X—X)—Nat—Nat OK
(VX.X—X)—Nat)—Nat X

Type reconstruction for ranks 2 and lower is decidable, and
that for rank 3 and higher of System F is undecidable.

Parametricity N | | &z

e Uniform behavior of polymorphic programs

CBool = VX.X—=>X—X;
tru= AX. At:X. Af:X. t;
fls = AX. At:X. Af:X. f;

(1)Tru and fls are the only two basic inhabitants of Cbool.

(2) Free Theorem:
e.g., for reverse: VX. List X -> List X, we have

map f . reverse = reverse . map f

Impredicativity

Definition. A definition (of a set, a type, etc.) is
called “"impredicative” if it involves a quan- tifier
whose domain includes the very thing being defined

System F is impredicative, because the type variable
X in the type

T = VX. X=X
ranges over all types, including T itself.

Russell’s paradox: let A = { x | x is not in x },
then is “"A in A"?

Homework N || Ezmssss

N«Milw olwumu

23.5.1 THEOREM [PRESERVATION|: f Tt : Tandt — t',thenI'—t’ : T. 0
Proof: EXERCISE [RECOMMENDED, **x|. 0

23.5.2 THEOREM [PROGRESS]: If t is a closed, well-typed term, then either t is a value
or else there is some t" with t — t’. O

Proof: EXERCISE [RECOMMENDED, **x|. O

