Chapter 23: Universal Types

System F
Power of System F
Properties (Soundness, decidability, parametericity, impredicativity)
System F

- First discovered by Jean-Yves Girard (1972)
- Independently developed by John Reynolds (1974) as polymorphic lambda-calculus
- A natural extension of $\lambda \to$ with a new form of abstract and application over types:

$$\begin{align*}
(\lambda X.t_{12}) [T_2] & \rightarrow [X \to T_2]t_{12} \\
(\lambda x:T_{11}.t_{12}) v_2 & \rightarrow [x \to v_2]t_{12}
\end{align*}$$

$$\frac{
\begin{array}{c}
\Gamma, X \vdash t_2 : T_2 \\
\end{array}
}{
\Gamma \vdash \lambda X.t_2 : \forall X.T_2
}$$

$$\frac{
\begin{array}{c}
\Gamma \vdash t_1 : \forall X.T_{12} \\
\end{array}
}{
\Gamma \vdash t_1 [T_2] : [X \to T_2]T_{12}
}$$
Syntax and Evaluation

Syntax
\[\begin{align*}
t & ::= x \\
 & \quad \lambda x : T . t \\
 & \quad t \; t \\
 & \quad \lambda X . t \\
 & \quad t [T] \\
\end{align*} \]

values:
\[\begin{align*}
\lambda x : T . t \\
\lambda X . t
\end{align*} \]

Evaluation

terms:
\[\begin{align*}
t_1 \rightarrow t'_1 \\
t_1 \; t_2 \rightarrow t'_1 \; t_2 \\
t_2 \rightarrow t'_2 \\
v_1 \; t_2 \rightarrow v_1 \; t'_2 \\
(\lambda x : T_{11} . t_{12}) \; v_2 \rightarrow [x \rightarrow v_2] \; t_{12} \quad \text{(E-APPABS)}
\end{align*} \]

values:
\[\begin{align*}
t_1 \rightarrow t'_1 \\
t_1 \; [T_2] \rightarrow t'_1 \; [T_2] \\
(\lambda X . t_{12}) \; [T_2] \rightarrow [X \rightarrow T_2] \; t_{12} \quad \text{(E-TAPPTAB)}
\end{align*} \]
Types and Type Context

\[\begin{align*}
T & ::= \\
& \quad X \\
& \quad T \rightarrow T \\
& \quad \forall X. T \\
\Gamma & ::= \\
& \quad \emptyset \\
& \quad \Gamma, x : T \\
& \quad \Gamma, X \\
\end{align*} \]

types:
- type variable
- type of functions
- universal type

contexts:
- empty context
- term variable binding
- type variable binding
Typing

\[\Gamma \vdash t : T\]

(T-VAR)

\[\frac{x : T \in \Gamma}{\Gamma \vdash x : T}\]

(T-ABS)

\[\frac{\Gamma, x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x : T_1 \cdot t_2 : T_1 \to T_2}\]

(T-APP)

\[\frac{\Gamma \vdash t_1 : T_{11} \to T_{12} \quad \Gamma \vdash t_2 : T_{11}}{\Gamma \vdash t_1 \; t_2 : T_{12}}\]

(T-TABS)

\[\frac{\Gamma, X \vdash t_2 : T_2}{\Gamma \vdash \lambda X \cdot t_2 : \forall X \cdot T_2}\]

(T-TAPP)

\[\frac{\Gamma \vdash t_1 : \forall X \cdot T_{12}}{\Gamma \vdash t_1 \; [T_2] : [X \to T_2]T_{12}}\]
Ex.: Defining Polymorphic Functions

- **id** = $\lambda X. \lambda x:X. x$
 - $id : \forall X. X \rightarrow X$
 - $id \ [\text{Nat}] 0 \rightarrow 0$

- **double** = $\lambda X. \lambda f:X\rightarrow X. \lambda a:X. f (f \ a)$
 - $double : \forall X. (X\rightarrow X) \rightarrow X \rightarrow X$
 - $double \ [\text{Nat}] (\lambda x: \text{Nat. succ(succ(x)))} 3 \rightarrow 7$
 - $quadruple = \lambda X. double \ [X\rightarrow X] (double \ [X])$

- **selfApp** = $\lambda x: \forall X. X \rightarrow X. x \ [\forall X. X \rightarrow X] \ x$
 - $selfApp : (\forall X. X \rightarrow X) \rightarrow (\forall X. X \rightarrow X)$
Ex.: Polymorphic Lists

- nil : $\forall X. \text{List } X$
- cons : $\forall X. X \rightarrow \text{List } X \rightarrow \text{List } X$
- isnil : $\forall X. \text{List } X \rightarrow \text{Bool}$
- head : $\forall X. \text{List } X \rightarrow X$
- tail : $\forall X. \text{List } X \rightarrow \text{List } X$

- map : $\forall X. \forall Y. (X \rightarrow Y) \rightarrow \text{List } X \rightarrow \text{List } Y$

\[
\text{map} = \lambda X. \lambda Y. \lambda f: X \rightarrow Y.
\]
\[
(\text{fix } (\lambda m: (\text{List } X) \rightarrow (\text{List } Y). \lambda l: \text{List } X.
\]
\[
\text{if isnil } [X] l \text{ then nil } [Y]
\]
\[
\text{else cons } [Y] (f \text{ (head } [X] l)) (m \text{ (tail } [X] l)))
\]

Exercise: Can you write reverse?
Ex.: Church Encoding

- Church encodings can be carried out in System F.

- CBool = $\forall X. X \rightarrow X \rightarrow X$;
 - $\operatorname{tru} = \lambda X. \lambda t: X. \lambda f: X. t$;
 - $\operatorname{fls} = \lambda X. \lambda t: X. \lambda f: X. f$;
 - $\operatorname{and} = ?$

- CNat = $\forall X. (X \rightarrow X) \rightarrow X \rightarrow X$
 - $c0 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. z$
 - $c1 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. s \ z$
 - $\operatorname{csucc} = \lambda n: \text{CNat}. \lambda X. \lambda s: X \rightarrow X. \lambda z: X. s \ (n \ [X] \ s \ z)$
 - $\operatorname{cplus} = \lambda m: \text{CNat}. \lambda n: \text{CNat}. \lambda X. \lambda s: X \rightarrow X. \lambda z: X. m \ [X] \ s \ (n \ [X] \ s \ z)$
Ex.: Encoding Lists

• List X = ∀R. (X → R → R) → R → R
 - nil = λX. (λR. λc:X→R→R. λn:R. n) as List X
 - cons = λX. λhd:X. λtl:List X.
 (λR. λc:X→R→R. λn:R. c hd (tl [R] c n)) as List X;
 - isnil = λX. λl:List X.
 l [Bool] (λhd:X. λtl:Bool. false) true
 - head = λX. λl:List X.
 l [X] (λhd:X. λtl:X. hd) (diverge [X] unit)
 - sum : List Nat → Nat
 sum = ⋯ definition without using fix ⋯?
Basic Properties of System F

Very similar to those of the simply typed λ-calculus.

Theorem [Preservation]: If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

Theorem [Progress]: If t is a closed, well-typed term, then either t is a value or there is some t' with $t \rightarrow t'$.

Theorem [Normalization]: Well-typed System F terms are normalizing.
Erasure and Type Construction

Theorem [Wells, 1994]: It is undecidable whether, given a closed term \(m \) of the untyped lambda-calculus, there is some well-typed term \(t \) in System F such that \(\text{erase}(t) = m \).
Partial Erasure and Type Construction

\[
\begin{align*}
erase_p(x) &= x \\
erase_p(\lambda x : T_1 . t_2) &= \lambda x : T_1 . erase_p(t_2) \\
erase_p(t_1 \ t_2) &= erase_p(t_1) \ erase_p(t_2) \\
erase_p(\lambda X . t_2) &= \lambda X . erase_p(t_2) \\
erase_p(t_1 [T_2]) &= erase_p(t_1) []
\end{align*}
\]

Theorem [Boehm 1985, 1989]: It is **undecidable** whether, given a closed term \(s \) in which type applications are marked but the arguments are omitted, there is some well-typed System F term \(t \) such that \(erase_p(t) = s \).

Type reconstruction is as hard as **higher-order unification**. (But many practical algorithms have been developed)
Theorem: If \(erase_v(t) = u \), then either (1) both \(t \) and \(u \) are normal forms according to their respective evaluation relations, or (2) \(t \rightarrow t' \) and \(u \rightarrow u' \), with \(erase_v(t') = u' \).
Fragments of System F

- **Rank-1 (prenex) polymorphism**
 - type variables may not be instantiated with polymorphic types

- **Rank-2 polymorphism**
 - A type is said to be of rank 2 if no path from its root to a \forall quantifier passes to the left of 2 or more arrows.

\[
(\forall X. X \to X) \to \text{Nat} \quad \text{OK}
\]
\[
\text{Nat} \to (\forall X. X \to X) \to \text{Nat} \to \text{Nat} \quad \text{OK}
\]
\[
((\forall X. X \to X) \to \text{Nat}) \to \text{Nat} \quad X
\]

Type reconstruction for ranks 2 and lower is decidable, and that for rank 3 and higher of System F is undecidable.
Parametricity

- Uniform behavior of polymorphic programs

\[
\text{CBool} = \forall X. X \rightarrow X \rightarrow X;
\]
\[
\text{tru} = \lambda X. \lambda t: X. \lambda f: X. t;
\]
\[
\text{fls} = \lambda X. \lambda t: X. \lambda f: X. f;
\]

(1) Tru and fls are the only two basic inhabitants of CBool.

(2) Free Theorem:

e.g., for reverse: \(\forall X. \text{List} X \rightarrow \text{List} X \), we have

\[
\text{map f . reverse} = \text{reverse . map f}
\]
Impredicativity

Definition. A definition (of a set, a type, etc.) is called “impredicative” if it involves a quantifier whose domain includes the very thing being defined.

System F is impredicative, because the type variable X in the type

$$T = \forall X. X \rightarrow X$$

ranges over all types, including T itself.

Russell’s paradox: let $A = \{ x \mid x \text{ is not in } x \}$, then is “$A$ in A”?
Homework

23.5.1 **Theorem** [Preservation]: If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: Exercise [Recommended, ***].

23.5.2 **Theorem** [Progress]: If t is a closed, well-typed term, then either t is a value or else there is some t' with $t \rightarrow t'$.

Proof: Exercise [Recommended, ***].