
Chapter 23: Universal Types 

 System F

Power of System F


Properties (Soundness, decidability, 
paramertricity, impredicativity) 







System F 

•  First discovered by Jean-Yves Girard (1972)

•  Independently developed by John Reynolds (1974) 

as polymorphic lambda-calculus

•  A natural extension of λà with a new form of 

abstract and application over types:




Syntax and Evaluation 



Types and Type Context 



Typing 



Ex.: Defining Polymorphic Functions 

•  id = λX. λx:X. X

–  id : ∀X. X → X

‒  id [Nat] 0 è 0




•  double = λX. λf:X→X. λa:X. f (f a)

–  double : ∀X. (X→X) → X → X

‒  double [Nat] (λx:Nat. succ(succ(x))) 3 è 7

–  quadruple = λX. double [X→X] (double [X])


•  selfApp = λx:∀X.X→X. x [∀X.X→X] x

–  selfApp : (∀X. X→X) → (∀X. X → X)




Ex.: Polymorphic Lists 

•  nil : ∀X. List X 

•  cons : ∀X. X → List X → List X 

•  isnil : ∀X. List X → Bool 

•  head : ∀X. List X → X 

•  tail : ∀X. List X → List X


•  map : ∀X. ∀Y. (X→Y) → List X → List Y

map = λX. λY. λf: X→Y. 

       (fix (λm: (List X) → (List Y). λl: List X.

       if isnil [X] l then nil [Y] 

       else cons [Y] (f (head [X] l)) (m (tail [X] l)))) 

Exercise: Can you write reverse? 



Ex.: Church Encoding 

•  Church encodings can be carried out in System F.


•  CBool = ∀X.X→X→X;

‒  tru = λX. λt:X. λf:X. t;

‒  fls = λX. λt:X. λf:X. f;

–  and = ?


•   CNat = ∀X. (X→X) → X → X

–  c0 = λX. λs:X→X. λz:X. Z

‒  c1= λX. λs:X→X. λz:X. s z;

‒  csucc = λn:CNat. λX. λs:X→X. λz:X. s (n [X] s z)

‒  cplus = λm:CNat. λn:CNat. λX. λs:X→X. λz:X. 

             m [X] s (n [X] s z) 



Ex.: Encoding Lists 

•  List X = ∀R. (X→R→R) → R → R

–  nil = λX. (λR. λc:X→R→R. λn:R. n) as List X

‒  cons = λX. λhd:X. λtl:List X. 

    (λR. λc:X→R→R. λn:R. c hd (tl [R] c n)) as List X;

–  isnil = λX. λl:List X.

    l [Bool] (λhd:X. λtl:Bool. false) true

–  head = λX. λl:List X. 

    l [X] (λhd:X. λtl:X. hd) (diverge [X] unit)

–  sum : List Nat à Nat

   sum = … definition without using fix …? 



Basic Properties of System F 

Very similar to those of the simply typed λ-calculus.



Theorem [Preservation]: If Γ ⊢ t : T and t→t′, then 
Γ ⊢ t′ : T.



Theorem [Progress]: If t is a closed, well-typed term, 
then either t is a value or there is some t′ with t →t′.



Theorem [Normalization]: Well-typed System F terms 
are normalizing.  



Erasure and Type Construction 

Theorem [Wells, 1994]: It is undecidable whether, given a 
closed term m of the untyped lambda-calculus, there is 
some well-typed term t in System F such that erase(t) = m. 



Partial Erasure and Type Construction 

Theorem [Boehm 1985, 1989]: It is undecidable whether, 
given a closed term s in which type applications are marked 
but the arguments are omitted, there is some well-typed 
System F term t such that erasep(t) = s. 

Type reconstruction is as hard as higher-order unification.

(But many practical algorithms have been developed) 



Erasure and Evaluation Order 

Theorem: If erasev(t) = u, then either (1) both t and u are 
normal forms according to their respective evaluation 
relations, or (2) t → t′ and u → u′, with erasev(t′) = u′. 

Keep type 
abstraction	



Fragments of System F 

•  Rank-1 (prenex) polymorphism

–  type variables may not be instantiated with polymorphic 

types


•  Rank-2 polymorphism

–  A type is said to be of rank 2 if no path from its root to 

a ∀ quantifier passes to the left of 2 or more arrows.


(∀X.X→X)→Nat                   OK

Nat→(∀X.X→X)→Nat→Nat      OK

((∀X.X→X)→Nat)→Nat           X

  

Type reconstruction for ranks 2 and lower is decidable, and 
that for rank 3 and higher of System F is undecidable. 



Parametricity 

•  Uniform behavior of polymorphic programs 

CBool = ∀X.X→X→X;

tru = λX. λt:X. λf:X. t;

fls = λX. λt:X. λf:X. f;


(1) Tru and fls are the only two basic inhabitants of Cbool.



(2) Free Theorem: 

    e.g., for reverse: ∀X. List X -> List X, we have



           map f . reverse = reverse . map f 



Impredicativity 

Definition. A definition (of a set, a type, etc.) is 
called “impredicative” if it involves a quan- tifier 
whose domain includes the very thing being defined



System F is impredicative, because the type variable 
X in the type 

             T = ∀X.X→X 

ranges over all types, including T itself.



Russell’s paradox: let A = { x | x is not in x },

then is “A in A”? 



Homework 


