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Change!!
We have focuses on developing tools for defining and 
reasoning about programming language features in the 
past 7 weeks .

Now it’s time to use these tools for something more 
ambitious.



Plan

1. Identify some characteristic “core features” of object-
oriented programming

2. Develop two different analysis of these features:

2.1   A translation into a lower-level language

Similar to compiler but translating to a well-formed 
formalization understood by everyone.

2.2   A direct, high-level formalization of a simple object-
oriented language (“Featherweight Java”)



The Translational Analysis
The first will be to show how many of the basic features of object-
oriented languages 

dynamic dispatch
encapsulation of state
inheritance
late binding (this)
super

can be understood as “derived forms” in a lower-level language 
with a rich collection of primitive features:

(higher-order) functions
records
references
recursion
subtyping



The Translational Analysis

For simple objects and classes, this translational analysis 
works very well.

When we come to more complex features (in particular, 
classes with this), it becomes less satisfactory

– the more direct treatment in the following chapter



Concepts



The Essence of Objects

What “is” object-oriented programming?
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The Essence of Objects

What “is” object-oriented programming?

This question has been a subject of debate for decades. 
Such arguments are always inconclusive and seldom very 
interesting.

However, it is easy to identify some core features that are 
shared by most OO languages and that, together, support 
a distinctive and useful programming style.



Dynamic dispatch

Perhaps the most basic characteristic of object-oriented 
programming is dynamic dispatch: when an operation is 
invoked on an object, the ensuring behavior depends on 
the object itself, rather than being fixed once and for all 
(as when we apply a function to an argument).

Two objects of the same type (i.e., responding to the 
same set of operations) may be implemented internally in 
completely different ways.

Known as polymorphism in OO communities.



Example (in Java)
class A {

int x = 0;
int m() { x = x+1; return x; }
int n() { x = x-1; return x; }

}
class B extends A {

int m() { x = x+5; return x; }
}
class C extends A {

int m() { x = x-10; return x; }
}

Note that (new B()).m() and (new C()).m() invoke completely  
different code!



Aside: multimethods
• Also known as multiple dispatch
• Dispatch an invocation based on multiple objects
• C# 4.0 multimethods

class Thing { }
class Asteroid : Thing { }
class Spaceship : Thing { }
static void CollideWithImpl(Asteroid x, Asteroid y) {

Console.WriteLine("Asteroid hits an Asteroid"); }
static void CollideWithImpl(Asteroid x, Spaceship y) {

Console.WriteLine("Asteroid hits a Spaceship"); }
static void CollideWithImpl(Spaceship x, Asteroid y) {

Console.WriteLine("Spaceship hits an Asteroid"); }
static void CollideWithImpl(Spaceship x, Spaceship y) {

Console.WriteLine("Spaceship hits a Spaceship"); }



Encapsulation

In most OO languages, each object consists of some 
internal state encapsulated with a collection of method 
implementations operating on that state.

– state directly accessible to methods

– state invisible / inaccessible from outside the object



Encapsulation
In Smalltalk, encapsulation is mandatory;  whereas in Java, 
encapsulation of internal state is optional. For full encapsulation, 
fields must be marked protected:

class A {
protected int x = 0;
int m() { x = x+1; return x; }
int n() { x = x-1; return x; }

}
class B extends A {

int m() { x = x+5; return x; }
}
class C extends A {

int m()  { x = x-10; return x; }
}

The code (new B()). x is not allowed.    



Aside: Objects vs. ADTs
An ADT comprises:
– A hidden representation type X
– A collection of operations for creating and manipulating 

elements of type X

Similar to OO encapsulation in that only the operations provided by 
the ADT are allowed to directly manipulate elements of the abstract 
type.  But different in that there is just one (hidden) representation 
type and just one implementation of the operations — no dynamic 
dispatch.

Both styles have advantages.

N.B. :  in the OO community, the term “abstract data type” is often 
used as more or less a synonym for “object type.” This is unfortunate, 
since it confuses two rather different concepts.



Subtyping and Encapsulation

The “type” (or “interface” in Smalltalk terminology) of an 
object is just the set of operations that can be performed on it 
(and the types of their parameters and results); it does not 
include the internal representation.

Object interfaces fit naturally into a subtype relation.

– An interface listing more operations is “better” than one listing 
fewer operations.

This gives rise to a natural and useful form of polymorphism: 
we can write one piece of code that operates uniformly on any 
object whose interface is “at least as good as I” (i.e., any 
object that supports at least the operations in I).



Example

// ... class A and subclasses B and C as above...

class D {

int p (A myA)  { return myA.m(); }

}

...

D d = new D();

int z = d.p (new B());

int w = d.p (new C());



Inheritance

Objects that share parts of their interfaces will typically 
(though not always) share parts of their behaviors.

To avoid duplication of code, the way is to write the 
implementations of these behaviors in just one place.

⟹ inheritance



Inheritance

Basic mechanism of inheritance: classes

A class is a data structure that can be

– instantiated to create new objects (“instances”)

– refined to create new classes (“subclasses”)

N.B.:  some OO languages offer an alternative mechanism, 
called delegation or aggregation, which allows new 
objects to be derived by refining the behavior of existing 
objects.



Example of inheritance
class A {

protected int x = 0;

int m() { x = x+1; return x; }

int n() { x = x-1; return x; }

}

class B extends A {

int p() { x = x*10; return x; }

}

An instance of B has methods m, n, and p. The first two 
are inherited from A.



Example of aggregation
The Go language

type A {

m string

n string

}

type B {

A

p string

}

An instance of B has methods m, n, and p, but B is not a sub 
type of A.



Late binding/open recursion

Most OO languages offer an extension of the basic 
mechanism of classes and inheritance called late binding 
or open recursion.

Late binding allows a method within a class to call 
another method via a special “pseudo-variable” this. If 
the second method is overridden by some subclass, then 
the behavior of the first method automatically changes as 
well.



Examples
class E {

protected int x = 0;

int m() { x = x+1; return x; }

int n() { x = x-1; return this.m(); }

}

class F extends E {

int m() { x = x+100; return x; }

}

Q: 
– What does (new E()). n() return?

– What does (new F()). n() return?



Calling “super”

It is sometimes convenient to “re-use” the functionality of 
an overridden method.

Java provides a mechanism called super for this purpose.



Example

class E {

protected int x = 0;

int m() { x = x+1; return x; }

int n() { x = x-1; return this.m(); }

}

class G extends E {

int m() { x = x+100; return super.m(); }

}

What does (new G()). n() return?



Getting down to details
(in the lambda-calculus)...



Objects 

A data structure 

– encapsulating some internal state

– offering access to this state 

via a collection of methods. 

The internal state is typically organized as a number of 
mutable instance variables that are shared among the 
methods and inaccessible to the outsiders.



Simple objects with encapsulated state

class Counter {

protected int x = 1; // Hidden state

int get() { return x; }

void inc() { x++; }

}

void inc3(Counter c) {

c.inc(); c.inc(); c.inc();

}

Counter c = new Counter();

inc3(c); 

inc3(c);

c.get();

How do we encode objects in the lambda-calculus?



Objects built with λ-calculus

c = let x = ref 1 in

{ get = λ_: Unit. ! x,

inc = λ_: Unit. x: = succ ! x };
⟹ c ∶ Counter

where
Counter = {get: Unit ⟶ Nat, inc: Unit ⟶ Unit}

The abstraction of block evaluation of the method bodies 
when the object is created. 

– Allowing the bodies to be evaluated repeatedly



Using Objects

inc3 = λc: Counter. (c. inc unit; c. inc unit; c. inc unit);
⟹ inc3 ∶ Counter ⟶ Unit

(inc3 c; inc3 c; c. get unit);

⟹ 7: Nat



Object Generators

newCounter =

λ_: Unit. let x = ref 1 in

{ get = λ_: Unit. ! x,

inc = λ_: Unit. x: = succ(! x)};
⟹ newCounter ∶ Unit ⟶ Counter

a function that creates and returns a new counter every 
time it is called. 



Grouping Instance Variables

Rather than a single reference cell, the states of most 
objects consist of a number of instance variables or fields.

It will be convenient (later) to group these into a single 
record (as a single unit).

newCounter =

λ_: Unit. let r = {x = ref 1} in

{ get = λ_: Unit. ! (r. x),

inc = λ_: Unit. r. x: = succ(! (r. x))};

The local variable r has type of  representation type
CounterRep = {x: Ref Nat}



Subtyping and Inheritance
class Counter {

protected int x = 1;
int get() { return x; }
void inc() { x + +; }

}

class ResetCounter extends Counter {
void reset() { x = 1; }

}

ResetCounter <: Counter

ResetCounter rc = new ResetCounter();
inc3(rc);
rc. reset();
inc3(rc);
rc. get();



Subtyping

ResetCounter =

{get: Unit ⟶ Nat, inc: Unit ⟶ Unit, reset: Unit ⟶ Unit};

newResetCounter =

λ_: Unit. let r = {x = ref 1} in

{ get = λ_: Unit. ! (r. x),

inc = λ_: Unit. r. x: = succ(! (r. x)),

reset = λ_: Unit. r. x: = 1};

⟹ newResetCounter ∶ Unit ⟶ ResetCounter



Subtyping

rc = newResetCounter unit;

(inc3 rc; rc. reset unit; inc3 rc; rc. get unit);

⟹4: Nat

What is the difference with Java subtyping?

Java: nominal types



Simple Classes

The definitions of newCounter and newResetCounter
are  identical except for the reset method.

This violates a basic principle of software engineering:

Each piece of behavior should be implemented in just 
one place in the code.



Reusing Methods
Idea:  could we just re-use the methods of some existing 
object to build a new object? 

resetCounterFromCounter =

λc: Counter. let r = {x = ref 1} in

{ get = c. get,

inc = c. inc,

reset = λ_: Unit. r. x: = 1};



Reusing Methods
Idea:  could we just re-use the methods of some existing 
object to build a new object? 

resetCounterFromCounter =

λc: Counter. let r = {x = ref 1} in

{ get = c. get,

inc = c. inc,

reset = λ_: Unit. r. x: = 1};

No: This doesn’t work properly because the reset method 
does not have access to the local variable r of the original 
counter.

⟹ classes



Classes

A class is a run-time data structure that can be

1. instantiated to yield new objects

2. extended to yield new classes



Classes
To avoid the problem we observed before, what we need to do is to 
separate the definition of the methods

counterClass =
λr: CounterRep.
{ get = _: Unit. ! (r. x),
inc = _: Unit. r. x: = succ(! (r. x))};

⟹ counterClass ∶ CounterRep ⟶ Counter

from the act of binding these methods to a particular set of  
instance variables:
newCounter =

λ_: Unit. let r = {x = ref 1} in
counterClass r;

⟹ newCounter:Unit ⟶ Counter



Defining a Subclass

resetCounterClass =
λr: CounterRep.

let super = counterClass r in
{ get = super. get,
inc = super. inc,
reset = λ_: Unit. r. x: = 1};

⟹ resetCounterClass ∶ CounterRep ⟶ ResetCounter

newResetCounter =
λ_: Unit. let r = {x = ref 1} in resetCounterClass r;

⟹ newResetCounter ∶ Unit ⟶ ResetCounter



Overriding and adding instance variables

class Counter {
protected int x = 1;
int get( ) { return x; }
void inc( ) { x + +; }

}

class ResetCounter extends Counter {
void reset { x = 1; }

}

class BackupCounter extends ResetCounter {
protected int b = 1;
void backup() { b = x; }
void reset x = b;

}



Adding instance variables
In general, when we define a subclass we will want to add new 
instances variables to its representation.

BackupCounter = { get: Unit ⟶ Nat, inc: Unit ⟶ Unit,
reset: Unit ⟶ Unit, backup: Unit ⟶ Unit};

BackupCounterRep = {x: Ref Nat, b: Ref Nat};

backupCounterClass =
λr: BackupCounterRep.
let super = resetCounterClass r in

{ get = super. get,
inc = super. inc,
reset = λ_: Unit. r. x: = ! (r. b),
backup = λ_: Unit. r. b:= ! (r. x)};

⟹ backupCounterClass : BackupCounterRep ⟶ BackupCounter



Aside 
Notes:
– backupCounterClass both extends (with backup) and 

overrides (with a new reset) the definition of counterClass

– subtyping is essential here (in the definition of super) 

backupCounterClass =

λr: BackupCounterRep.

let super = resetCounterClass r in

{get = super. get,

inc = super. inc,

reset = λ_: Unit. r. x: = ! (r. b),

backup = λ_: Unit. r. b: = ! (r. x)};



Calling super
Suppose (for the sake of the example) that we wanted every call to
inc to first back up the current state. We can avoid copying the
code for backup by making inc use the backup and inc methods
from super.

funnyBackupCounterClass =
λr: BackupCounterRep.
let super = backupCounterClass r in
{get = super. get,
inc = λ_: Unit. (super. backup unit; super. inc unit),
reset = super. reset,
backup = super. backup};

⟹
funnyBackupCounterClass ∶ BackupCounterRep ⟶ BackupCounter



Calling between methods

What if counters have set, get, and inc methods:

SetCounter = { get: Unit ⟶ Nat, set: Nat ⟶ Unit,
inc: Unit ⟶ Unit};

setCounterClass =
λr: CounterRep.

{ get = λ_: Unit. ! (r. x),
set = λi: Nat. r. x: = i,
inc = λ_: Unit. r. x: = (succ r. x) };



Calling between methods
What if counters have set, get, and inc methods:

SetCounter = {get: Unit ⟶ Nat, set: Nat ⟶ Unit,
inc: Unit ⟶ Unit};

setCounterClass =
λr: CounterRep.

{ get = λ_: Unit. ! (r. x),
set = λi: Nat. r. x: = i,
inc = λ_: Unit. r. x: = (succ r. x) };

Bad style: The functionality of inc could be expressed in terms of 
the functionality of get and set.

Can we rewrite this class so that the get/set functionality appears 
just once?



Calling between methods

In Java we would write:

class SetCounter {

protected int x = 0;

int get () { return x; }

void set (int i) { x = i; }

void inc () { this. set( this. get() + 1 ); }
}



Better ?
setCounterClass =

λr: CounterRep.
fix

(λthis: SetCounter.
{ get = λ_: Unit. ! (r. x),
set = λi: Nat. r. x: = i,
inc = λ_: Unit. this. set (succ (this. get unit))});

Check: the type of the inner λ-abstraction is SetCounter⟶
SetCounter, so the type of the fix expression is  SetCounter.

This is just a definition of a group of mutually recursive functions.

Is there any problem of this implementation?



Review: General Recursions

• Introduce “fix” operator: fix f = f (fix f)

(It cannot be defined as a derived form in simply typed lambda calculus)



Better…

Note that the fixed point in
setCounterClass =

λr: CounterRep.
fix
(λthis: SetCounter.

{get = λ_: Unit. ! (r. x),
set = λi: Nat. r. x: = i,
inc = λ_: Unit. this. set (succ (this. get unit))});

is “closed” — we “tie the knot” when we build the record    
(arranging that the very record we are constructing is the one 
passed as this) ,  and the use of fix is entirely internal to 
setCounterClass

Polymorphism is not properly implemented.



Better…
Idea: move the application of fix from the class definition…

setCounterClass =
λr: CounterRep.

fix
(λthis: SetCounter.

{get = λ_: Unit. ! (r. x),
set = λi: Nat. r. x: = i,
inc = λ_: Unit. this. set (succ (this. get unit))});

... to the object creation function:

newSetCounter =
λ_: Unit. let r = {x = ref 1} in

fix (setCounterClass r);

In essence, we are switching the order of fix and  λr: CounterRep…



Better…
Note that we have changed the types of classes from…

setCounterClass =
λr: CounterRep.

fix
(λthis: SetCounter.

{get = λ_: Unit. ! (r. x),
set = λi: Nat. r. x: = i,
inc = λ_: Unit. this. set (succ (this. get unit))});

⟹setCounterClass: CounterRep ⟶ SetCounter

... to :

setCounterClass =
λr: CounterRep.

λthis: SetCounter.
{get = λ_: Unit. ! (r. x),
set = λi: Nat. r. x: = i,
inc = λ_: Unit. this. set (succ (this. get unit))};

⟹setCounterClass: CounterRep ⟶ SetCounter ⟶ SetCounter



Using this

Let’s continue the example by defining a new class of 
counter objects (a subclass of set-counters) that keeps a 
record of the number of times the set method has ever 
been called.

InstrCounter = {get: Unit ⟶ Nat, set: Nat ⟶ Unit,
inc: Unit ⟶ Unit, accesses: Unit ⟶ Nat};

InstrCounterRep = {x: Ref Nat, a: Ref Nat};



Using this
instrCounterClass =

λr: InstrCounterRep.
λthis: InstrCounter.
let super = setCounterClass r this in
{ get = super. get,
set = λi: Nat. (r. a:= succ(! (r. a)); super. set i),
inc = super. inc,
accesses = λ_: Unit. ! (r. a)};

⟹ instrCounterClass ∶
InstrCounterRep ⟶ InstrCounter ⟶ InstrCounter

Notes:
– the methods use both this (which is passed as a parameter)  and 

super (which is constructed using this and the instance variables)
– the inc in super will call the set defined here, which calls the 

superclass set
– suptyping plays a crucial role (twice) in the call to setCounterClass



More refinement …



A small fly in the ointment

The implementation we have given for instrumented counters is not 
very useful because calling the object creation function

newInstrCounter =
λ_: Unit. let r = {x = ref 1, a = ref 0} in

fix (instrCounterClass r);

will cause the evaluator to diverge!

Intuitively, the problem is the “unprotected” use of this in the call 
to setCounterClass in
instrCounterClass:

instrCounterClass =
λr: InstrCounterRep.

λthis: InstrCounter.
let super = setCounterClass r this in

…



Review:Evaluation Strategies

• The call-by-value strategy

– only outermost redexes are reduced and where a redex is 
reduced only when its right-hand side has already been 
reduced to a value, a term that cannot be reduced any more.



One possible solution
Idea: “delay” this by putting a dummy abstraction in front of 
it...

setCounterClass =
λr: CounterRep.
λthis: Unit ⟶ SetCounter.

λ_: Unit.
{get = λ_: Unit. ! (r. x),
set = λi: Nat. r. x: = i,
inc = λ_: Unit. (this unit). set

(succ((this unit). get unit))};
⟹ setCounterClass ∶
CounterRep ⟶ (Unit ⟶ SetCounter) ⟶ (Unit ⟶ SetCounter)

newSetCounter =
λ_: Unit. let r = {x = ref 1} in

fix (setCounterClass r) unit;



One possible solution
Similarly:

instrCounterClass =
λr: instrCounterClass.
λthis: Unit ⟶ instrCounter.

λ_: Unit.
let super = setCounterClass r this unit in

{get = super.get,
set = λi: Nat. (r.a ≔ succ(!(r.a)); super.set i),
inc = super.inc,
accesses = λ_: Unit. ! (r. a)};

newinstrtCounter =
λ:Unit. let r = x = ref 1, a = ref 0 in

fix (instrCounterClass r) unit;



Success

This works, in the sense that we can now instantiate 
instrCounterClass (without diverging!), and its instances 
behave in the way we intended.



Success (?) 

This works, in the sense that we can now instantiate

instrCounterClass (without diverging!), and its instances

behave in the way we intended.

However, all the “delaying” we added has an unfortunate 
side effect: instead of computing the “method table” just 
once, when an object is created, we will now re-compute 
it every time we invoke a method!

Section 18.12 in the book shows how this can be repaired 
by using references instead of fix to “tie the knot” in the 
method table.


