
Design Principles of Programming Languages

Recursive Types

Zhenjiang Hu, Haiyan Zhao, Yingfei Xiong

Peking University, Spring Term



Review: what have we 
learned so far?
• 𝜆-calculus: function and data can be treated the 

same

• Types: annotations for preventing bugs
• All terms can be typed: functions, statements, etc.

• Safety=Progress+Preservation

• Structural types: can we do better than Java?

• Subtypes: what if a term has more than one type?
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What in the latter half of the 
course?
• Recursive types

• from finite world to infinite world
• theory of induction and coinduction

• Type Inference
• Polymorphism

• theoretical base for generics
• System F: an important system for academic study

• Do come to class
• Will be much harder than the first half!
• The book is not perfect.
• Class performance will be part of your final score
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Defining a linked list

• Implementing in Java
class ListNode {

int value;

ListNode next;

}

• Implementing in fullSimple
• NatList = <nil:Unit, cons:{Nat,NatList}>;

• nil = <nil=unit> as NatList;

• cons = lambda n:Nat. lambda l:NatList. 
<cons={n,l}> as NatList; 
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Compiling
• natlist.f

NatList = <nil:Unit, cons:{Nat,NatList}>;

nil = <nil=unit> as NatList;

cons = lambda n:Nat. lambda l:NatList. 
<cons={n,l}> as NatList; 
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Why?

• Source of Parser.mly
AType :

…

| UCID 

{ fun ctx ->

if isnamebound ctx $1.v then

TyVar(name2index $1.i ctx $1.v, ctxlength ctx)

else 

TyId($1.v) }

…

• Second NatList is parsed as a new TyId
• NatList = <nil:Unit, cons:{Nat,NatList}>;
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Recursive Types

• Useful in defining complex types

• Need special mechanism to support

• This course is about
• How useful recursive types are

• How to support recursive types
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Defining Recursive Types

• Using operator 𝜇
• NatList = 𝜇X. <nil:Unit, cons:{Nat,X}>

• Meaning: X = <nil:Unit, cons:{Nat,X}>.

• Constructors of NatList
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NatList Functions
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Can we define an infinite list 
in NatList?
• 1, 2, 1, 2, 1, 2, 1, 2, …

• infList = fix (𝜆f. cons 1 (cons 2 f))

• hd (tl (tl infList)) //get the 3rd element

• Unfortunately, will diverge 
• why?
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Review: Reduction Order(page57)

• Full beta-reduction
• any redex may be reduced at any time

• Normal Order
• leftmost, outmost redex is reduced first

• Call by name (used in lazy evaluation languages)
• Normal Order + No reduction inside abstractions

• Call by value (used in the book)
• Call by name + Parameters need to be values

• infList = fix (𝜆f. cons 1 (cons 2 f))

• hd (tl (tl infList)) //get the 3rd element
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Interlude: Why do we need 
infinite lists?
• Computers can only perform finite computations

• Answer
• Because we can
• Because it is cool
• Because it could be more structural and reusable

• Example: find the largest i where ith element in Fibonacci 
sequence is smaller than C
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Java version: 
int index = 0, v1=0, v2=1;
while (v1 < C) { 
int t = v1+v2; 
v1=v2; 
v2=t; 
index++;

}
return index;

Haskell version:
fib = 0 : scanl (+) 1 fib
length takeWhile (< C) fib



Recursive Functional Types

• What is this function type about?

• Returning elements in an infinite sequence one by 
one
• Continuation

• Java counterpart: iterator
• With a mutable state
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A Fibonacci stream

Stream = 𝜇X. Unit->{Nat, X};

fibonacci =
let fib = fix (𝜆f:Nat->Nat->Stream.

𝜆 x:Nat. 𝜆 y:Nat.
𝜆 _:Unit. {x, f y (plus x y)})

in
fib 0 1;

• Why not diverge?
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Exercies

• Use the idea of Stream to fix infList

• Two functions “nil” and “cons” for list constructions

• Two functions “hd” and “tl” for returning elements

• Construct the following two lists in your 
implementation
• 01

• 1212121212…

• And return the second element

• Implement in fullequirec
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Answer

• InfList = Rec X. Unit-><infNil:Unit, infCons:{Nat,X}>;

• InfBody = <infNil:Unit, infCons:{Nat,InfList}>;

• nil = lambda _:Unit. <infNil=unit> as InfBody;

• cons = lambda n:Nat. lambda l:InfList. lambda _:Unit. 
<infCons={n,l}> as InfBody;

• zeroOneList = cons 0 (cons 1 nil);

• oneTwoList = fix (lambda l:InfList. cons 1 (cons 2 
(lambda _:Unit. l unit)));

19



Hungry Function

• Stupid yet simple function. Will be used to discuss 
the properties of recursive types.

• Hungry = 𝜇A. Nat→A;

• f = fix (𝜆f: Hungry. 𝜆n:Nat. f);
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Representing Objects 

• Can we represent the following immutable counter?
class Counter {

int get();

Counter inc();

Counter dec();

}

• Without recursive type:
• Counter = {get: Unit ⟶ Nat, inc: Unit ⟶ Counter,
dec: Unit → Counter}
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Functional Objects
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Review: fixed-point 
combinator
• Law: fix f = f (fix f)

• Y Combinator

• Use of Y Combinator: calculating Σ𝑖=0
𝑛 𝑖

f = 𝜆f. 𝜆n. 

if (iszero n) then 0 

else n + f (n – 1)

Y f
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(fix f)



Review: fixed-point 
combinator
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• Why fix is used instead of Y?



Answer

• Under full beta-reduction: Let f : 𝑇 → 𝑇
• When T is a function type

• Fix and Y are equal: 𝜆𝑦 𝑥 𝑥 𝑦 𝑣 = 𝑥 𝑥 𝑣 = 𝑓𝑖𝑥 𝑓 𝑣

• Else
• (Fix f) will stuck, while (Y f) will diverage

• Not under call-by-value because
• (x x) is not a value
• while (𝜆y. x x y) is
• Y will diverge for any f
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Review: fixed-point 
combinator
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• Can we define Y in simple typed 𝜆-calculus?
• No

• x has a recursive type

• Y was defined as a special language primitive



Defining fix using recursive 
types
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• T is the type of the recursive function

• Q: Do languages with recursive types have strong 
normalization property?
• Strong normalization: well-typed program will terminate

• A: No, because 𝑌𝑇 can be defined

𝑌𝑇

𝑌𝑇



Defining Lambda Calculus

• Read the book
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Implementation Problem 1

• Hungry = 𝜇A. Nat→A;

• h = fix (𝜆f: Nat→ Hungry. 𝜆n:Nat. f);

• What is the type of h?
• Hungry?

• Nat→Hungry?

• Nat→Nat→Hungry?
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Simple but Effective Solution

• Every term has one type

• Use fold/unfold to convert between types

• h = fix (𝜆f: Nat→ Hungry. 𝜆n:Nat. f)
• h: Nat→ Hungry

• fold[Hungry] h: Hungry

• unfold[Hungry] (h 1): Nat→ Hungry
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Iso-recursive Types
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Exercise

• Implement (finite) NatList in iso-recursive type
• implement nil, cons, hd
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Example

• NatList = 𝜇X. <nil:Unit, cons:{Nat,X}>

• NLBody = <nil:Unit, 
cons:{Nat,NatList}>

• nil = fold [NatList](<nil=unit> as 
NLBody);

• cons = 𝜆n:Nat. 𝜆l:NatList. 
fold[NatList] <cons={n,l}> as NLBody

33



Example

34



Implementation Problem 2

• Even <: Nat 

• A = 𝜇X.Nat→(Even×X)

• B  =  𝜇Y.Even→(Nat×Y)

• What is the subtype relation between A and B?
• A <: B?

• B <: A?

• No relation?
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Subtyping by assumption

•
Σ,𝑋<:𝑌⊢𝑆<:𝑇

Σ⊢𝜇𝑋.𝑆<:𝜇𝑌.𝑇

• Example:
• Even <: Nat 
• A = 𝜇X.Nat→(Even×X)
• B  =  𝜇Y.Even→(Nat×Y)

• Assuming X<:Y
• We have Nat→(Even×X) <: Even→(Nat×Y)
• Thus A <: B

• Why this works? Principle of safe substitution.

• Its implementing algorithm will be explained in the next 
course

36



Recursive Types in Practice

• Recursive data types
• Most language supports recursive data types by nominal 

type system
• Java, C#, …

• Some languages with structural types try to generate 
fold/unfold
• Haskell, OCaml…

• Recursive function types
• C# supports recursive function types through nominal 

types
• “delegate int A()” and “delegate int B()” are different
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Homework

• Implement Y combinator in your favorite language 
except Ocaml
• Your implementation will be limited by the 

expressiveness of the language, but should support (fix f) 
where f:(Nat->Nat)->(Nat->Nat)

• Your implementation should contain test cases for the 
teaching assistants to easily verify your implementation

• Hint: wrap functions in data types, like Java interface

• Please submit electronically
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