

Recursive Types

Zhenjiang Hu, Haiyan Zhao, <u>Yingfei Xiong</u>
Peking University, Spring Term

Review: what have we learned so far?

- λ -calculus: function and data can be treated the same
- Types: annotations for preventing bugs
 - All terms can be typed: functions, statements, etc.
 - Safety=Progress+Preservation
- Structural types: can we do better than Java?
- Subtypes: what if a term has more than one type?

What in the latter half of the course?

- Recursive types
 - · from finite world to infinite world
 - theory of induction and coinduction
- Type Inference
- Polymorphism
 - theoretical base for generics
 - System F: an important system for academic study
- Do come to class
 - Will be much harder than the first half!
 - The book is not perfect.
 - Class performance will be part of your final score

Defining a linked list

Implementing in Java

```
class ListNode {
  int value;
  ListNode next;
}
```

- Implementing in fullSimple
 - NatList = <nil:Unit, cons:{Nat,NatList}>;
 - nil = <nil=unit> as NatList;

Compiling

natlist.f

```
NatList = <nil:Unit, cons:{Nat,NatList}>;
nil = <nil=unit> as NatList;
cons = lambda n:Nat. lambda l:NatList.
<cons={n,l}> as NatList;
```

```
/cygdrive/d/Kuaipan/Courses/2014 Design Principles of Programming Languag...

Yingfei@Yingfei-Laptop /cygdrive/d/Kuaipan/Courses/2014 Design Principles of P
rogramming Languages/src/fullsimple
$ ./f natlist.f
NatList :: *
nil : NatList
D:\Kuaipan\Courses\2014 Design Principles of Programming Languages\src\fullsimple\
natlist.f:3.46:
field does not have expected type
```

Why?

Source of Parser.mly

```
AType:
...
| UCID
| fun ctx ->
| if isnamebound ctx $1.v then
| TyVar(name2index $1.i ctx $1.v, ctxlength ctx)
| else
| TyId($1.v) }
```

- Second NatList is parsed as a new Tyld
 - NatList = <nil:Unit, cons:{Nat,NatList}>;

Recursive Types

- Useful in defining complex types
- Need special mechanism to support

- This course is about
 - How useful recursive types are
 - How to support recursive types

Defining Recursive Types

- Using operator μ
 - NatList = μX . <nil:Unit, cons:{Nat,X}>
 - Meaning: X = <nil:Unit, cons:{Nat,X}>.

Constructors of NatList

```
nil = <nil=unit> as NatList;
```

▶ nil : NatList

```
cons = \lambdan:Nat. \lambda1:NatList. <cons={n,1}> as NatList;
```

▶ cons : Nat → NatList → NatList

NatList Functions

Can we define an infinite list in NatList?

- 1, 2, 1, 2, 1, 2, 1, 2, ...
- infList = fix (λ f. cons 1 (cons 2 f))
- hd (tl (tl infList)) //get the 3rd element
- Unfortunately, will diverge
 - why?

Review: Reduction Order (page 57)

- Full beta-reduction
 - any redex may be reduced at any time
- Normal Order
 - leftmost, outmost redex is reduced first
- Call by name (used in lazy evaluation languages)
 - Normal Order + No reduction inside abstractions
- Call by value (used in the book)
 - Call by name + Parameters need to be values
- infList = fix (λ f. cons 1 (cons 2 f))
- hd (tl (tl infList)) //get the 3rd element

Interlude: Why do we need infinite lists?

- Computers can only perform finite computations
- Answer
 - Because we can
 - Because it is cool
 - Because it could be more structural and reusable
- Example: find the largest i where ith element in Fibonacci sequence is smaller than C

```
Java version:
    int index = 0, v1=0, v2=1;
    while (v1 < C) {
        int t = v1+v2;
        v1=v2;
        v2=t;
        index++;
    }
    return index;</pre>
Haskell version:
    fib = 0 : scanl (+) 1 fib
    length takeWhile (< C) fib
    length takeWhile (< C) fib
    int t = v1+v2;
    v1=v2;
    v2=t;
    index++;
}</pre>
```


Recursive Functional Types

What is this function type about?

```
Stream = \mu A. Unit\rightarrow{Nat,A};
```

- Returning elements in an infinite sequence one by one
 - Continuation
- Java counterpart: iterator
 - With a mutable state

A Fibonacci stream


```
Stream = \muX. Unit->{Nat, X};

fibonacci =

let fib = fix (\lambdaf:Nat->Nat->Stream.

\lambdax:Nat. \lambday:Nat.

\lambda_:Unit. {x, f y (plus x y)})

in

fib 0 1;
```

Why not diverge?

Exercies

- Use the idea of Stream to fix infList
- Two functions "nil" and "cons" for list constructions
- Two functions "hd" and "tl" for returning elements
- Construct the following two lists in your implementation
 - 01
 - 1212121212...
- And return the second element
- Implement in fullequirec

Answer

InfList = Rec X. Unit-><infNil:Unit, infCons:{Nat,X}>;
InfBody = <infNil:Unit, infCons:{Nat,InfList}>;
nil = lambda _:Unit. <infNil=unit> as InfBody;
cons = lambda n:Nat. lambda l:InfList. lambda _:Unit. <infCons={n,1}> as InfBody;
zeroOneList = cons 0 (cons 1 nil);
oneTwoList = fix (lambda l:InfList. cons 1 (cons 2 (lambda _:Unit. l unit)));

Hungry Function

• Stupid yet simple function. Will be used to discuss the properties of recursive types.

```
• Hungry = \mu A. Nat\rightarrow A;
```

```
• f = fix (\lambdaf: Hungry. \lambdan:Nat. f);
```


Representing Objects

Can we represent the following immutable counter?

```
class Counter {
  int get();
  Counter inc();
  Counter dec();
}
```

Without recursive type:

```
    Counter = {get: Unit → Nat, inc: Unit → Counter,
dec: Unit → Counter}
```


Functional Objects


```
Counter = \muC. {get:Nat, inc:Unit\rightarrowC, dec:Unit\rightarrowC};
  c = let create = fix (\lambdaf: {x:Nat}\rightarrowCounter. \lambdas: {x:Nat}.
                                \{get = s.x,
                                 inc = \lambda:Unit. f {x=succ(s.x)},
                                 dec = \lambda_{:Unit. f \{x=pred(s.x)\} \})
       in create \{x=0\}:
▶ c : Counter
  c1 = c.inc unit;
  c2 = c1.inc unit;
  c2.get;
▶ 2 : Nat
```


Review: fixed-point combinator

- Law: fix f = f (fix f)
- Y Combinator (fix f) $Y = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$
- Use of Y Combinator: calculating $\Sigma_{i=0}^{n}i$ f = λ f. λ n. if (iszero n) then 0 else n + f (n 1) Y f

Review: fixed-point combinator

$$Y = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$$

fix =
$$\lambda f$$
. (λx . f (λy . x x y)) (λx . f (λy . x x y))

Why fix is used instead of Y?

Answer

fix =
$$\lambda f$$
. (λx . f (λy . x x y)) (λx . f (λy . x x y))
Y = λf . (λx . f (x x)) (λx . f (x x))

- Under full beta-reduction: Let $f: T \to T$
 - When T is a function type
 - Fix and Y are equal: $(\lambda y (x x) y) v = (x x) v = (fix f) v$
 - Else
 - (Fix f) will stuck, while (Y f) will diverage
- Not under call-by-value because
 - (x x) is not a value
 - while $(\lambda y. x x y)$ is
 - Y will diverge for any f

Review: fixed-point combinator

fix =
$$\lambda f$$
. (λx . f (λy . x x y)) (λx . f (λy . x x y))
 $Y = \lambda f$. (λx . f (x x)) (λx . f (x x))

- Can we define Y in simple typed λ -calculus?
 - No
 - x has a recursive type
 - Y was defined as a special language primitive

Defining fix using recursive types

$$Y_T = \lambda f: T \rightarrow T.$$
 $(\lambda x: (\mu A.A \rightarrow T).$ $f(x x))$ $(\lambda x: (\mu A.A \rightarrow T).$ $f(x x))$ $Y_T : (T \rightarrow T) \rightarrow T$

- T is the type of the recursive function
- Q: Do languages with recursive types have strong normalization property?
 - Strong normalization: well-typed program will terminate
- A: No, because Y_T can be defined

Defining Lambda Calculus

Read the book

Implementation Problem 1

- Hungry = μA . Nat $\rightarrow A$;
- h = fix (λ f: Nat \rightarrow Hungry. λ n:Nat. f);

- What is the type of h?
 - Hungry?
 - Nat→Hungry?
 - Nat→Nat→Hungry?

Simple but Effective Solution

- Every term has one type
- Use fold/unfold to convert between types
- h = fix (λ f: Nat \rightarrow Hungry. λ n:Nat. f)
 - h: Nat → Hungry
 - fold[Hungry] h: Hungry
 - unfold[Hungry] (h 1): Nat→Hungry

Iso-recursive Types

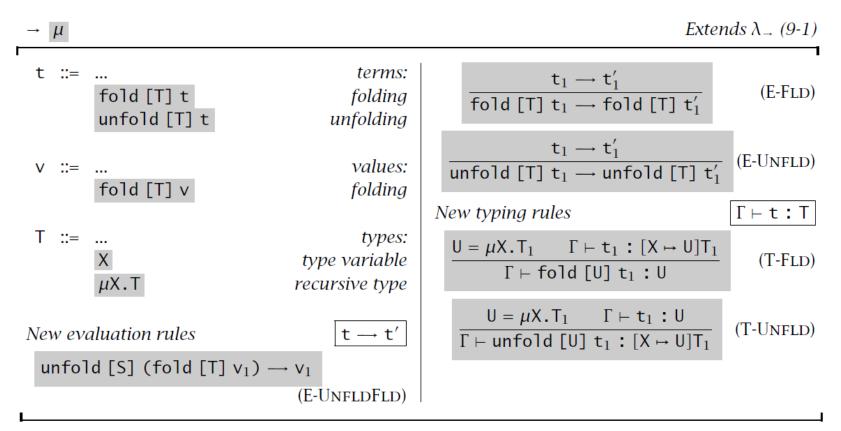


Figure 20-1: Iso-recursive types ($\lambda\mu$)

Exercise

- Implement (finite) NatList in iso-recursive type
 - implement nil, cons, hd

Example

- NatList = μX . <nil:Unit, cons:{Nat,X}>
- NLBody = <nil:Unit, cons:{Nat,NatList}>
- nil = fold [NatList](<nil=unit> as
 NLBody);
- cons = λn:Nat. λl:NatList.
 fold[NatList] <cons={n,1}> as NLBody

Example


```
isnil = \lambda1:NatList.
            case unfold [NatList] 1 of
               <nil=u> ⇒ true
            | <cons=p> ⇒ false;
hd = \lambda1:NatList.
         case unfold [NatList] 1 of
            \langle nil=u \rangle \Rightarrow 0
          | < cons = p > \Rightarrow p.1;
tl = \lambda1:NatList.
         case unfold [NatList] 1 of
            <nil=u> \Rightarrow 1
          | < cons = p > \Rightarrow p.2;
```


Implementation Problem 2

- Even <: Nat
- A = $\mu X.Nat \rightarrow (Even \times X)$
- B = μ Y.Even \rightarrow (Nat \times Y)

- What is the subtype relation between A and B?
 - A <: B?
 - B <: A?
 - No relation?

Subtyping by assumption

•
$$\frac{\Sigma, X <: Y \vdash S <: T}{\Sigma \vdash \mu X.S <: \mu Y.T}$$

- Example:
 - Even <: Nat
 - A = $\mu X.Nat \rightarrow (Even \times X)$
 - B = μ Y.Even \rightarrow (Nat \times Y)
 - Assuming X<:Y
 - We have Nat→(Even×X) <: Even→(Nat×Y)
 - Thus A <: B
- Why this works? Principle of safe substitution.
- Its implementing algorithm will be explained in the next course

Recursive Types in Practice

- Recursive data types
 - Most language supports recursive data types by nominal type system
 - Java, C#, ...
 - Some languages with structural types try to generate fold/unfold
 - Haskell, OCaml...
- Recursive function types
 - C# supports recursive function types through nominal types
 - "delegate int A()" and "delegate int B()" are different

Homework

- Implement Y combinator in your favorite language except Ocaml
 - Your implementation will be limited by the expressiveness of the language, but should support (fix f) where f:(Nat->Nat)->(Nat->Nat)
 - Your implementation should contain test cases for the teaching assistants to easily verify your implementation
 - Hint: wrap functions in data types, like Java interface
 - Please submit electronically

