
Chapter 3: Untyped Arithmetic Expressions

A small language of numbers and booleans

Basic aspects of programming languages



Introduction

Grammar

Programs

Evaluation



Grammar (Syntax) 

t ::=
true
false
if t then t else t 
0
succ t
pred t
iszero t

terms: 
constant true 
constant false 
conditional constant 
zero 
successor 
predecessor 
zero test

t: meta-varaible (non-terminal symbol)



Programs and Evaluations

• A program in the language is just a term built from the 
forms given by the grammar.

if false then 0 else 1 (1 = succ 0)

1 

iszero (pred (succ 0)) 

 true



Syntax

Many ways of defining syntax (besides grammar)



Terms, Inductively

The set of terms is the smallest set T such that 

1. {true, false, 0} ⊆ T;

2. if t1 ∈ T, then {succ t1, pred t1, iszero t1} ⊆ T;

3. if t1 ∈ T, t2 ∈ T, and t3 ∈ T, 

then if t1 then t2 else t3 ∈ T. 



Terms, by Inference Rules

The set of terms is defined by the following rules: 

Inference rules = Axioms + Proper rules



Terms, Concretely

For each natural number i, define a set Si as follows:

Finally, let 

Exercise [**]: How many elements does S3 have?
Proposition: T = S 



Induction on Terms

Inductive definitions

Inductive proofs



Inductive Definitions

The set of constants appearing in a term t, written Consts(t), 
is defined as follows: 



Inductive Definitions

The size of a term t, written size(t), is defined as follows: 



Inductive Definitions

The depth of a term t, written depth(t), is defined as 
follows: 



Inductive Proof

Lemma. The number of distinct constants in a term t is no 
greater than the size of t:

| Consts(t) | ≤ size(t)

Proof. By induction over the depth of t. 
– Case t is a constant

– Case t is pred t1, succ t1, or iszero t1

– Case t is if t1 then t2 else t3



Inductive Proof

Theorem [Structural Induction]

If, for each term s, given P (r) for all immediate subterms r 
of s we can show P(s), then P (s) holds for all s. 



Semantic Styles

Three basic approaches



Operational Semantics

• Operational semantics specifies the behavior of a 
programming language by defining a simple abstract 
machine for it. 

• An example (often used in this course): 
– terms as states

– transition from one state to another as simplification

– meaning of t is the final state starting from the state 
corresponding to t



Denotational Semantics

• Giving denotational semantics for a language consists of 
– finding a collection of semantic domains, and then

– defining an interpretation function mapping terms into elements 
of these domains. 

• Main advantage: It abstracts from the gritty details of 
evaluation and highlights the essential concepts of the 
language. 



Axiomatic Semantics

• Axiomatic methods take the laws (properties) 
themselves as the definition of the language. The 
meaning of a term is just what can be proved about it. 

– They focus attention on the process of reasoning about 
programs. 

– Hoare logic: define the meaning of imperative languages



Evaluation

Evaluation relation (small-step/big-step)

Normal form

Confluence and termination



Evaluation on Booleans



One-step Evaluation Relation

• The one-step evaluation relation → is the smallest binary 
relation on terms satisfying the three rules in the 
previous slide. 

• When the pair (t,t′) is in the evaluation relation, we say 
that “t → t′ is derivable.” 



Derivation Tree

“if t then false else false → if u then false else false” is 
witnessed by the following derivation tree: 

where



Induction on Derivation

Theorem [Determinacy of one-step evaluation]: 

If t → t′ and t → t′′, then t′ = t′′. 

Proof. By induction on derivation of t → t′.

If the last rule used in the derivation of t → t′ is E-IfTrue, 
then t has the form if true then t2 else t3.

It can be shown that there is only one way to reduce such t.

…



Normal Form

• Definition: A term t is in normal form if no evaluation 
rule applies to it.

• Theorem: Every value is in normal form.

• Theorem: If t is in normal form, then t is a value. 
– Prove by contradiction (then by structural induction).



Multi-step Evaluation Relation

• Definition: The multi-step evaluation relation →∗ is the 
reflexive, transitive closure of one-step evaluation. 

• Theorem [Uniqueness of normal forms]: If t →∗ u and t 
→∗ u′, where u and u′ are both normal forms, then u = u′. 

• Theorem [Termination of Evaluation]: For every term t 
there is some normal form t′ such that t →∗ t′. 



Extending Evaluation to Numbers



Stuckness

• Definition: A closed term is stuck if it is in normal form 
but not a value.

• Examples:
– succ true

– succ false

– If zero then true else false



Big-step Evaluation



Big-step vs small-step

• Big-step is usually easier to understand
– called “natural semantics” in some articles

• Big-step often leads to simpler proof

• Big-step cannot describe computations that do not 
produce a value
– Non-terminating computation

– “Stuck” computation

29



Summary

• How to define syntax?
– Grammar, Inductively, Inference Rules, Generative

• How to define semantics?
– Operational, Denotational, Axomatic

• How to define evaluation relation (operational 
semantics)?
– Small-step/Big-step evaluation relation

– Normal form

– Confluence/termination



Homework

• Do Exercise 3.5.16 in Chapter 3.


