
Chapter 3: Untyped Arithmetic Expressions

A small language of numbers and booleans

Basic aspects of programming languages

Introduction

Grammar

Programs

Evaluation

Grammar (Syntax)

t ::=
true
false
if t then t else t
0
succ t
pred t
iszero t

terms:
constant true
constant false
conditional constant
zero
successor
predecessor
zero test

t: meta-varaible (non-terminal symbol)

Programs and Evaluations

• A program in the language is just a term built from the
forms given by the grammar.

if false then 0 else 1 (1 = succ 0)

1

iszero (pred (succ 0))

 true

Syntax

Many ways of defining syntax (besides grammar)

Terms, Inductively

The set of terms is the smallest set T such that

1. {true, false, 0} ⊆ T;

2. if t1 ∈ T, then {succ t1, pred t1, iszero t1} ⊆ T;

3. if t1 ∈ T, t2 ∈ T, and t3 ∈ T,

then if t1 then t2 else t3 ∈ T.

Terms, by Inference Rules

The set of terms is defined by the following rules:

Inference rules = Axioms + Proper rules

Terms, Concretely

For each natural number i, define a set Si as follows:

Finally, let

Exercise [**]: How many elements does S3 have?
Proposition: T = S

Induction on Terms

Inductive definitions

Inductive proofs

Inductive Definitions

The set of constants appearing in a term t, written Consts(t),
is defined as follows:

Inductive Definitions

The size of a term t, written size(t), is defined as follows:

Inductive Definitions

The depth of a term t, written depth(t), is defined as
follows:

Inductive Proof

Lemma. The number of distinct constants in a term t is no
greater than the size of t:

| Consts(t) | ≤ size(t)

Proof. By induction over the depth of t.
– Case t is a constant

– Case t is pred t1, succ t1, or iszero t1

– Case t is if t1 then t2 else t3

Inductive Proof

Theorem [Structural Induction]

If, for each term s, given P (r) for all immediate subterms r
of s we can show P(s), then P (s) holds for all s.

Semantic Styles

Three basic approaches

Operational Semantics

• Operational semantics specifies the behavior of a
programming language by defining a simple abstract
machine for it.

• An example (often used in this course):
– terms as states

– transition from one state to another as simplification

– meaning of t is the final state starting from the state
corresponding to t

Denotational Semantics

• Giving denotational semantics for a language consists of
– finding a collection of semantic domains, and then

– defining an interpretation function mapping terms into elements
of these domains.

• Main advantage: It abstracts from the gritty details of
evaluation and highlights the essential concepts of the
language.

Axiomatic Semantics

• Axiomatic methods take the laws (properties)
themselves as the definition of the language. The
meaning of a term is just what can be proved about it.

– They focus attention on the process of reasoning about
programs.

– Hoare logic: define the meaning of imperative languages

Evaluation

Evaluation relation (small-step/big-step)

Normal form

Confluence and termination

Evaluation on Booleans

One-step Evaluation Relation

• The one-step evaluation relation → is the smallest binary
relation on terms satisfying the three rules in the
previous slide.

• When the pair (t,t′) is in the evaluation relation, we say
that “t → t′ is derivable.”

Derivation Tree

“if t then false else false → if u then false else false” is
witnessed by the following derivation tree:

where

Induction on Derivation

Theorem [Determinacy of one-step evaluation]:

If t → t′ and t → t′′, then t′ = t′′.

Proof. By induction on derivation of t → t′.

If the last rule used in the derivation of t → t′ is E-IfTrue,
then t has the form if true then t2 else t3.

It can be shown that there is only one way to reduce such t.

…

Normal Form

• Definition: A term t is in normal form if no evaluation
rule applies to it.

• Theorem: Every value is in normal form.

• Theorem: If t is in normal form, then t is a value.
– Prove by contradiction (then by structural induction).

Multi-step Evaluation Relation

• Definition: The multi-step evaluation relation →∗ is the
reflexive, transitive closure of one-step evaluation.

• Theorem [Uniqueness of normal forms]: If t →∗ u and t
→∗ u′, where u and u′ are both normal forms, then u = u′.

• Theorem [Termination of Evaluation]: For every term t
there is some normal form t′ such that t →∗ t′.

Extending Evaluation to Numbers

Stuckness

• Definition: A closed term is stuck if it is in normal form
but not a value.

• Examples:
– succ true

– succ false

– If zero then true else false

Big-step Evaluation

Big-step vs small-step

• Big-step is usually easier to understand
– called “natural semantics” in some articles

• Big-step often leads to simpler proof

• Big-step cannot describe computations that do not
produce a value
– Non-terminating computation

– “Stuck” computation

29

Summary

• How to define syntax?
– Grammar, Inductively, Inference Rules, Generative

• How to define semantics?
– Operational, Denotational, Axomatic

• How to define evaluation relation (operational
semantics)?
– Small-step/Big-step evaluation relation

– Normal form

– Confluence/termination

Homework

• Do Exercise 3.5.16 in Chapter 3.

