

#### Chapter 3: Untyped Arithmetic Expressions

A small language of numbers and booleans Basic aspects of programming languages





#### Introduction

Grammar Programs Evaluation



### Grammar (Syntax)



t ::= true false if t then t else t 0 succ t pred t iszero t

terms: constant true constant false conditional constant zero successor predecessor zero test

t: meta-varaible (non-terminal symbol)



**Programs and Evaluations** 



• A program in the language is just a term built from the forms given by the grammar.

```
if false then 0 else 1 (1 = succ 0)

\rightarrow 1
```

```
iszero (pred (succ 0))

→ true
```





#### Syntax

#### Many ways of defining syntax (besides grammar)



Terms, Inductively



The set of terms is the smallest set T such that

- 1. {true, false, 0}  $\subseteq$  T;
- 2. if  $t1 \in T$ , then {succ t1, pred t1, iszero t1}  $\subseteq T$ ;
- 3. if  $t1 \in T$ ,  $t2 \in T$ , and  $t3 \in T$ ,

then if t1 then t2 else t3  $\in$  T.



Terms, by Inference Rules



The set of terms is defined by the following rules:



Inference rules = Axioms + Proper rules



#### Terms, Concretely



For each natural number i, define a set S<sub>i</sub> as follows:

$$S_{0} = \emptyset$$

$$S_{i+1} = \{ \text{true, false, 0} \}$$

$$\cup \{ \text{succ } t_{1}, \text{ pred } t_{1}, \text{ iszero } t_{1} \mid t_{1} \in S_{i} \}$$

$$\cup \{ \text{if } t_{1} \text{ then } t_{2} \text{ else } t_{3} \mid t_{1}, t_{2}, t_{3} \in S_{i} \}.$$
Finally, let
$$S = \bigcup_{i} S_{i}.$$

**Exercise** [\*\*]: How many elements does S<sub>3</sub> have? **Proposition**: T = S





#### Induction on Terms

Inductive definitions Inductive proofs



### **Inductive Definitions**



The set of constants appearing in a term t, written Consts(t), is defined as follows:

| = | {true}      |
|---|-------------|
| = | {false}     |
| = | <b>{0</b> } |
| = | Consts(t    |
|   |             |

 $s(t_1)$ 

 $s(t_1)$ 

 $s(t_1)$ 

 $s(t_1) \cup Consts(t_2) \cup Consts(t_3)$ 



#### **Inductive Definitions**



The size of a term t, written size(t), is defined as follows:



## **Inductive Definitions**



The depth of a term t, written depth(t), is defined as follows:

| depth(true)                    | = | 1                                             |
|--------------------------------|---|-----------------------------------------------|
| <i>depth</i> (false)           | = | 1                                             |
| depth(0)                       | = | 1                                             |
| $depth(succ t_1)$              | = | $depth(t_1) + 1$                              |
| $depth(pred t_1)$              | = | $depth(t_1) + 1$                              |
| $depth(iszerot_1)$             | = | $depth(t_1) + 1$                              |
| $depth(ift_1 thent_2 elset_3)$ | = | $max(depth(t_1), depth(t_2), depth(t_3)) + 1$ |



Inductive Proof



**Lemma**. The number of distinct constants in a term t is no greater than the size of t:

| Consts(t)  $| \leq size(t)$ 

**Proof**. By induction over the depth of t.

- Case t is a constant
- Case t is pred t1, succ t1, or iszero t1
- Case t is if t1 then t2 else t3





#### **Theorem** [Structural Induction]

# If, for each term s, given P (r) for all immediate subterms r of s we can show P(s), then P (s) holds for all s.





#### Semantic Styles

#### Three basic approaches



# **Operational Semantics**



- Operational semantics specifies the behavior of a programming language by defining a simple abstract machine for it.
- An example (often used in this course):
  - terms as states
  - transition from one state to another as simplification
  - meaning of t is the final state starting from the state corresponding to t



#### **Denotational Semantics**



- Giving denotational semantics for a language consists of
  - finding a collection of semantic domains, and then
  - defining an interpretation function mapping terms into elements of these domains.
- Main advantage: It abstracts from the gritty details of evaluation and highlights the essential concepts of the language.



#### **Axiomatic Semantics**



- Axiomatic methods take the laws (properties) themselves as the definition of the language. The meaning of a term is just what can be proved about it.
  - They focus attention on the process of reasoning about programs.
  - Hoare logic: define the meaning of imperative languages





#### Evaluation

# Evaluation relation (small-step/big-step) Normal form Confluence and termination



#### **Evaluation on Booleans**







**One-step Evaluation Relation** 



- The one-step evaluation relation → is the smallest binary relation on terms satisfying the three rules in the previous slide.
- When the pair (t,t') is in the evaluation relation, we say that "t → t' is derivable."



**Derivation Tree** 



"if t then false else false  $\rightarrow$  if u then false else false" is witnessed by the following derivation tree:



where

s def = if true then false else false
t def = if s then true else true
u def if false then true else true



Induction on Derivation



**Theorem** [Determinacy of one-step evaluation]: If  $t \rightarrow t'$  and  $t \rightarrow t''$ , then t' = t''.

**Proof**. By induction on derivation of  $t \rightarrow t'$ .

If the last rule used in the derivation of  $t \rightarrow t'$  is E-IfTrue, then t has the form if true then t2 else t3. It can be shown that there is only one way to reduce such t.



#### Normal Form



- **Definition**: A term t is in normal form if no evaluation rule applies to it.
- **Theorem**: Every value is in normal form.
- **Theorem**: If t is in normal form, then t is a value.
  - Prove by contradiction (then by structural induction).



Multi-step Evaluation Relation



- **Definition**: The multi-step evaluation relation →\* is the reflexive, transitive closure of one-step evaluation.
- **Theorem** [Uniqueness of normal forms]: If  $t \rightarrow * u$  and  $t \rightarrow * u'$ , where u and u' are both normal forms, then u = u'.
- Theorem [Termination of Evaluation]: For every term t there is some normal form t' such that t →\* t'.



# Extending Evaluation to Numbers



| New syr | ntactic forms      |                                                                   | New evaluation rules                                                                                                        | $t \rightarrow t'$ |
|---------|--------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------|
| t ::=   | 0<br>succt         | terms:<br>constant zero<br>successor                              | $\frac{\mathtt{t}_1 \longrightarrow \mathtt{t}_1'}{\mathtt{succ} \mathtt{t}_1 \longrightarrow \mathtt{succ} \mathtt{t}_1'}$ | (E-SUCC)           |
|         | pred t<br>iszero t | predecessor<br>zero test                                          | pred $0 \rightarrow 0$                                                                                                      | (E-PredZero)       |
| v ::=   |                    | values:                                                           | pred (succ nv <sub>1</sub> ) $\rightarrow$ nv <sub>1</sub>                                                                  | (E-PREDSUCC)       |
| nv ::=  | nv                 | numeric value<br>numeric values:                                  | $\frac{\mathtt{t}_1 \longrightarrow \mathtt{t}_1'}{\texttt{pred} \mathtt{t}_1 \longrightarrow \texttt{pred} \mathtt{t}_1'}$ | (E-Pred)           |
|         | 0<br>succ nv       | zero value<br>successor value                                     | iszero 0 $\rightarrow$ true                                                                                                 | (E-ISZEROZERO)     |
|         |                    | iszero (succ nv <sub>1</sub> ) $\rightarrow$ false (E-ISZEROSUCC) |                                                                                                                             |                    |
|         |                    |                                                                   | $\frac{\texttt{t}_1 \rightarrow \texttt{t}_1'}{\texttt{iszero}\texttt{t}_1 \rightarrow \texttt{iszero}\texttt{t}_1'}$       | (E-ISZERO)         |



#### Stuckness



- **Definition**: A closed term is **stuck** if it is in normal form but not a value.
- Examples:
  - succ true
  - succ false
  - If zero then true else false



#### **Big-step Evaluation**



| $\mathbf{v} \Downarrow \mathbf{v}$                                                                                                                                                        | (B-VALUE)      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| $\frac{\mathtt{t}_1 \Downarrow \mathtt{true} \qquad \mathtt{t}_2 \Downarrow \mathtt{v}_2}{\mathtt{ift}_1 \mathtt{thent}_2 \mathtt{elset}_3 \Downarrow \mathtt{v}_2}$                      | (B-IFTRUE)     |
| $\frac{\mathtt{t}_1 \Downarrow \mathtt{false} \qquad \mathtt{t}_3 \Downarrow \mathtt{v}_3}{\mathtt{ift}_1 \mathtt{then} \mathtt{t}_2 \mathtt{else} \mathtt{t}_3 \Downarrow \mathtt{v}_3}$ | (B-IFFALSE)    |
| $\frac{\texttt{t}_1 \Downarrow \texttt{n} \texttt{v}_1}{\texttt{succ } \texttt{t}_1 \Downarrow \texttt{succ } \texttt{n} \texttt{v}_1}$                                                   | (B-Succ)       |
| $\frac{\mathtt{t}_1 \Downarrow \mathtt{0}}{\mathtt{pred} \mathtt{t}_1 \Downarrow \mathtt{0}}$                                                                                             | (B-PredZero)   |
| $\frac{\mathtt{t}_1 \Downarrow \mathtt{succ}  \mathtt{n} \mathtt{v}_1}{\mathtt{pred}  \mathtt{t}_1 \Downarrow \mathtt{n} \mathtt{v}_1}$                                                   | (B-PREDSUCC)   |
| $\frac{\mathtt{t}_1 \Downarrow \mathtt{0}}{\mathtt{iszero} \mathtt{t}_1 \Downarrow \mathtt{true}}$                                                                                        | (B-IszeroZero) |
| t <sub>1</sub> ↓ succ nv <sub>1</sub><br>iszero t <sub>1</sub> ↓ false                                                                                                                    | (B-ISZEROSUCC) |



## Big-step vs small-step



- Big-step is usually easier to understand
  - called "natural semantics" in some articles
- Big-step often leads to simpler proof
- Big-step cannot describe computations that do not produce a value
  - Non-terminating computation
  - "Stuck" computation



## Summary



- How to define syntax?
  - Grammar, Inductively, Inference Rules, Generative
- How to define semantics?
  - Operational, Denotational, Axomatic
- How to define evaluation relation (operational semantics)?
  - Small-step/Big-step evaluation relation
  - Normal form
  - Confluence/termination



#### Homework



#### Do Exercise 3.5.16 in Chapter 3. ${\color{black}\bullet}$

3.5.16EXERCISE [RECOMMENDED, **\*\***]: A different way of formalizing meaningless states of the abstract machine is to introduce a new term called wrong and augment the operational semantics with rules that explicitly generate wrong in all the situations where the present semantics gets stuck. To do this in detail, we introduce two new syntactic categories

| non-numeric normal forms: |
|---------------------------|
| run-time error            |
| constant true             |
| constant false            |
| non-boolean normal forms: |
| run-time error            |
| numeric value             |
|                           |

and we augment the evaluation relation with the following rules:

| if badbool then $t_1$ else $t_2 \rightarrow wrong$ | (E-IF-WRONG)     |
|----------------------------------------------------|------------------|
| succ badnat $\rightarrow$ wrong                    | (E-SUCC-WRONG)   |
| pred badnat $\rightarrow$ wrong                    | (E-PRED-WRONG)   |
| iszero badnat → wrong                              | (E-IsZero-Wrong) |

Show that these two treatments of run-time errors agree by (1) finding a precise way of stating the intuition that "the two treatments agree," and (2) proving it. As is often the case when proving things about programming languages, the tricky part here is formulating a precise statement to be proved the proof itself should be straightforward. 

