Chapter 5: The Untyped Lambda Calculus

What is lambda calculus for?
Basics: syntax and operational semantics
Programming in the Lambda Calculus
Formalities (formal definitions)

NI iz

What is Lambda calculus for? \ ||

e A core calculus (used by Landin) for
— capturing the language’s essential mechanisms,

— with a collection of convenient derived forms whose behavior is
understood by translating them into the core

e A formal system invented in the 1920s by Alonzo Church
(1936, 1941), in which all computation is reduced to the
basic operations of function definition and application.

Basics

AFANEESNE, 9N 35 ENa.

ﬁ;ﬂﬁﬁﬂﬂﬁf

Syntax N | | E&iszass

e The lambda-calculus (or A-calculus) embodies this kind of
function definition and application in the purest possible
form.

t = terms:
X variable
AX.t abstraction

tt application

Abstract Syntax Trees

e (st)u (orsimply writtenasstu)

apply

/N

apply

AN

N | | ez

Abstract Syntax Trees

* Ax. (Ay. ((xy) x))
(or simply written as Ax. Ay. Xy x)

AX

Ay

apply

/ N\

apply X

N"m

Scope NIl sz

e An occurrence of the variable x is said to be bound when
it occurs in the body t of an abstraction Ax.t.

— Axis a binder whose scope is t. A binder can be renamed: e.g.,
AX.X = Ay.y.

e An occurrence of x is free if it appears in a position
where it is not bound by an enclosing abstraction on x.

— Exercises: Find free variable occurrences from the following
terms: x y, Ax.x, Ay. x y, (Ax.x) x.

lllllllllllllllllll

Operational Semantics N | | SRz

e Beta-reduction: the only computation

(Ax. ty2) to — [x =~ t2]t2,

“the term obtained by replacing all free occurrences of xint;, by t, “

A term of the form (Ax.t12) t2 is called a redex.

e Examples:

(AX.X)y 2y

(AX. X (Ax.X)) (ur) =2 ur (Ax.x)

Evaluation Strategies NI ez

e Full beta-reduction
— Any redex may be reduced at any time.

e Example:

— Let id = Ax.x. We can apply beta reduction to any of the following
underlined redexes:

id (id (Az. id z2))
id ((0d (Az. id z)))
id (id (Az. 1d z))

Note: lambda calculus is confluent under full
beta-reduction. Ref. Church—Rosser property.

Evaluation Strategies N | |iEisa

e The normal order strategy
— The leftmost, outmost redex is always reduced first.

id (0d (Az. 1d z))
— 1d (Az. 1d z2)
— Az.idz
— AZ.Z

Evaluation Strategies N | |iEisa

[Mocional luticatt o bndaimadiy

e The call-by-name strategy

— A more restrictive normal order strategy, allowing no reduction
inside abstraction.

id (id (Az. id z))
— 1id (Az. id 2)
— Az.1d z

L

Evaluation Strategies NI ez

e The call-by-value strategy

— only outermost redexes are reduced and where a redex is
reduced only when its right-hand side has already been reduced
to a value, a term that cannot be reduced any more.

id (id (Az. id z))
— 1id (Az. id 2)
Az.1d z

L

Programming in the Lambda Calculus

Multiple Arguments
Church Booleans
Pairs
Church Numerals
Recursion

N | | ez

Multiple Arguments

f(x,y)=s

currying@

fx y=s

U

f=Ax. Ay.s

N | | ez

Church Booleans N | | ezmsZaise

e Boolean values can be encoded as:

tru = At. AMf. t
fls = At. Af. f

e Boolean conditional and operators can be encoded as:

test=Al. Am.An.Imn
and = Ab. Ac. b cfls

Church Booleans N || sz

e An Example

test truvw
= (Al. Am. An. Imn) truvw
— (Am. An. trumn) vw
— (An. truvn) w
— truwvw
= (At Af.t) vw
— (Af. v)w

—_— '.']'

Church Numerals \ ||

e Encoding Church numerals:

Cp = AS. AZ. Z;

€, = As. Az. 5 Z;

C» = As. AZz. 5 (5 Z2):

Cy = As. AZ. 5 (s (5 Z));

etc.
e Defining functions on Church numerals:

succ =An. As. Az. s (n s z);
plus =Am.An.As.Az. ms (n s z);
times = Am. An. m (plus n) cO;

Church Numerals \ ||

e Can you define minus?

e Suppose we have pred, can you define minus?
- im.An.npred m

e Can you define pred?

- In.2s.Az.n (1g.2h.h (g s)) (Au.z) (Au.u)

— (Au. z) -- a wrapped zero

— (Au.u) —the last application to be skipped

- (xlg. Ah.h (g S)) -- apply h if it is the last application, otherwise
apply g

— Tryn=0, 1, 2 to see the effect

Pairs

e Encoding

pair = AT.As.Ab. b T s;
fst = Ap. p tru;
snd = Ap. p Tls;

e An Example

fst (pairvw)
= fst ((Af. As. Ab. b fs) vw)
— fst ((As. Ab. bwvs)w)
— fst (Ab. bvw)
= (Ap.ptru) (Ab. bvw
— (Ab. bwvw) tru
— truwvw
— Y

lllllllllllllllllll

Recursion N | | ezmsZaise

e Terms with no normal form are said to diverge.
omega = (Ax. x X) (AX. X x);

e Fixed-point combinator
fix = Af. (Ax. f(Ay. x xy)) (Ax. f (Ay. xxV));

Note: fix f = f (fix f)

lllllllllllllllllll

Recursion NI I R TP

e Basic ldea:
A recursive definition: h = <body containing h>

U

g = AMf . <body containing >
h=fixg

Recursion

e Example:
fac=An.ifegncO
then cl
else times n (fac (pred n)

W

g=Af.An.ifeqncO

then cl

else times n (f (pred n)
fac=fix g

Exercise: Check that fac c3 = c6.

NI iz

Y Combinator N || Eiisass

Y=AF. (Ax. f (xx)) (Ax. T (xx))

fix = Af. (Ax. £ (Ay. x x y)) (Ax. £ (Ay. x x y))

e Why fix is used instead of Y?

lllllllllllllllllll

Answer NI I R S EH PR

fix = Af. (Ax. f (Ay. x x y)) (Ax. f (Ay. x X y))

Y=Af. (Ax. f (xx)) (Ax. f (xx))

e Assuming call-by-value
- (x x) isnotavalue
— while (ly. x x y)is
— Y will diverge for any f

24

Formalities (Formal Definitions)

Syntax (free variables)
Substitution
Operational Semantics

N"m

Syntax N | | s

e Definition [Terms]: Let V be a countable set of variable
names. The set of terms is the smallest set T such that

1.x € Tforeveryx €V,
2.ift, & Tandx € V,thenAx.t; €T,
3.ftleTandt, €T, thent t, € T.

e Free Variables
FV(x) = {x}

FV(Ax.t;) = FV(t) \ {x}
FV(t, t,) = FV(t,) U FV(t,)

Substitution N || sz

(% — 5]x = 5
X — 5]y = y if y = x
X —s5](Ay.t1) = Ay. [x~— 5]t ify+xandy ¢ FV(s)
[x =~ s](t; tz) = [x~—s]t [x—s]t
Example:

[x 2>y z] (Ay. x)
= [x 2 yz] Aw. x w)
= A\W.yzw

Operational Semantics

Svntax

Ax.t
tt

AX.tT

terms:
variable
abstraction
application

values:
abstraction value

AFANEESNE, 9N 35 ENa.

Nl o e
Evaluation t—t
b (E-APP1)
= 1
1t — 1) 1
t; — t5
- (F-APP2)

(Ax.t12) vz — [x—v2]tys

(E-APPABS)

Summary N | | Eiisssss

e What is lambda calculus for?
— A core calculus for capturing language essential mechanisms
— Simple but powerful
e Syntax
— Function definition + function application
— Binder, scope, free variables
e QOperational semantics
— Substitution

— Evaluation strategies: normal order, call-by-name, call-by-value

Homework

e Understand Chapter 5.
e Do exercise 5.3.6 in Chapter 5.

N"m

5.3.6 EXERCISE [*x]: Adapt these rules to describe the other three strategies for
evaluation—full beta-reduction, normal-order, and lazy evaluation. 0

