Chapter 8: Typed Arithmetic Expressions

Types
The Typing Relation
Safety = Progress + Preservation

N"m

Reall: Syntax and Semantics N | | s

t:=
true
false
if tthentelset
0 B —t E-S
succt Succ t; — succ t) (E-Succ)
pred t
pred0 — 0 (E-PREDZERD)

iszero t

pred (succ nvy) — nv; (E-PREDSUCC)

Evaluation t— 1t
T, — t]

: . _ : E-PRED
if true then t; elset; — tz (E-IFTRUE) pred t; — pred ¥, ()
if false then t: else t3 — t3 (E-IFFALSE) iszero 0 — true (E-ISZEROZERO)

t; — t] (E-IF) iszero (succ nv,) — false (E-IszEroSuCC)
: -IF
if t; then t: else t3 £ — ¢
— if t] then tz else t3 ! : (E-ISZERO)

iszero t; — iszero t]

Evaluation Results

e Values
v =
true
false
nv
nv =
0
SUCC nv
°

Get stuck (i.e., pred false)

N | | ESiszass

values:

true value
false value
numeric value

numeric values:
zero value
successor value

lllllllllllllllllll

Types of Terms NI Ezhssass

e Can we tell, without actually evaluating a term, that the
term evaluation will not get stuck?

v

e Distinguish two types of terms:
— Nat: terms whose results will be a numeric value
— Bool: terms whose results will be a Boolean value

e “atermthastype T” means that t “obviously” (statically)
evaluates to avalue of T

— if true then false else true has type Bool

— pred (succ (pred (succ 0))) has type Nat

The Typing Relation: t: T

—te

N | | ez
Moo s of indarmai

Typing Rule for Booleans N || sz

New syntactic forms New typing rules t: T
T == types: .

Bool type of booleans true : Bool (T-TRUE)

false : Bool (T-FALSE)

1 + Bool t 47| t3 4T
ift; thenty elset; : T

(T-IF)

Typing Rules for Numbers

New syntactic forms
T = .. tvpes:
Nat type of natural numbers
New typing rules t: T
0 : Nat (T-ZERO)

AFANEESNE, 9N 35 ENa.

Nl Bl AR S E 50T
1 + Nat (T-SUCE)
succ t; : Nat
t; : Nat (T-PRED)
pred t; : Nat
t; : Nat
(T-ISZERO)

iszero t; : Bool

lllllllllllllllllll

Typing Relation: Formal Definition N | | EEmasass

e Definition: the typing relation for arithmetic expressions
is the smallest binary relation between terms and types
satisfying all instances of the typing rules.

e Atermtistypable (or well typed) if there is some T such
thatt:T.

Inversion Lemma (Generation Lemma) N | | EEmasass

e Given a valid typing statement, it shows
— how a proof of this statement could have been generated,;
— arecursive algorithm for calculating the types of terms.

LEMMA [INVERSION OF THE TYPING RELATION]:

1. If true : R, then R = Bool.

2. If false : R, then R = Bool.

3. If if t; then t; else t3 : R, then t; : Bool, t; : R, and t3 : R.
4. If 0 : R, then R = Nat.

5. If succ t; : R, then R = Nat and t; : Nat.

6. If pred t; : R, then R = Nat and t; : Nat.

7. If iszero t; : R, then R = Bool and t; : Nat.

Typing Derivation N | | ESiszass

—— T-ZERO — T-ZEROD
0 : Nat 0 : Nat
T-ISZERO — T-ZERO T-PRED
iszero 0 : Bool 0 : Nat pred 0 : HatTI
-IE

1f iszero 0 then 0 else pred 0 : Nat

Statements are formal assertions about the typing of programs.
Typing rules are implications between statements

Derivations are deductions based on typing rules.

Uniqueness of Types \ || B

e Theorem [Uniqueness of Types]: Each term t has at most
one type. That s, if t is typable, then its type is unique.

e Note: later on, we may have a type system where a term
may have many types.

Safety = Progress + Preservation

N | | ez
Mool Inuiaae ol bnfarmadicn

Safety (Soundness) N | | sz

e By safety, it means well-typed terms do not “go wrong”.

e By “go wrong”, it means reaching a “stuck state” that is
not a final value but where the evaluation rules do not
tell what to do next.

Safety = Progress + Preservation N | | sz

Well-typed terms do not get stuck

1

e Progress: A well-typed term is not stuck (either it is a
value or it can take a step according to the evaluation
rules).

e Preservation: If a well-typed term takes a step of
evaluation, then the resulting term is also well typed.

Canonical Form N | | EEmasass

e Lemma [Canonical Forms]:
— If vis a value of type Bool, then v is either true or false.

— If vis a value of type Nat, then v is a numeric value according to the
grammar for nv.

Vo= values:
true true value
false false value
nwv numeric value

nv = numeric values:
0 zero value

succ ny successor value

Progress N | | s

e Theorem [Progress]: Suppose t is a well-typed term (that
is, t : T for some T). Then either t is a value or else there
is some t' witht - t'.

Proof: By induction on a derivation of t : T.

- case T-True: true : Bool OK?
- case T-If:
tl:Bool, t2:T,t3:T
——————————————————————————— OK?
iftlthent2elset3: T

Preservation

e Theorem [Preservation]:
Ift:Tandt—>t/, thent':T.

Proof: By induction on a derivation of t : T.

- case T-True: true : Bool OK?
- case T-If:
tl:Bool,t2:T,t3:T
--------------------------- OoK?
iftlthent2elset3: T

N | | ESiszass

Note: The preservation theorem is often called subject reduction

property (or subject evaluation property)

Homework N | | ez

e Read Chapter 8.
e Do Exercises 8.3.7

8.3.7 EXERCISE |[RECOMMENDED, **|: Suppose our evaluation relation is defined in
the big-step style, as in Exercise 3.5.17. How should the intuitive property of
type safety be formalized? O

