Chapter 9: Simply Typed Lambda-Calculus

- Function Types
- The Typing Relation
- Properties of Typing
- The Curry-Howard Correspondence
- Erasure and Typability
Function Types

- **T₁→T₂**
 - classifying functions that expect arguments of type T₁ and return results of type T₂.

 (The type constructor → is right-associative.
 T₁→T₂→T₃ stands for T₁→(T₂→T₃))

- We will consider Booleans with lambda calculus
 - T ::= Bool

 T → T

- Examples
 - Bool→Bool
 - (Bool→Bool) → (Bool→Bool)
Assume all variables in Γ are different.
Type Derivation Tree

\[
\frac{x : \text{Bool}}{x : \text{Bool} \vdash x : \text{Bool}} \quad \text{T-VAR}
\]

\[
\frac{x : \text{Bool} \vdash x : \text{Bool}}{\vdash \lambda x : \text{Bool}. x : \text{Bool} \rightarrow \text{Bool}} \quad \text{T-ABS}
\]

\[
\frac{\vdash \text{true} : \text{Bool}}{\vdash (\lambda x : \text{Bool}. x) \text{true} : \text{Bool}} \quad \text{T-APP}
\]
Properties of Typing

Inversion Lemma
Uniqueness of Types
Canonical Forms
Safety: Progress + Preservation
Inversion Lemma

Lemma [Inversion of the Typing Relation]:

1. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
2. If $\Gamma \vdash \lambda x : T_1 . t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$.
3. If $\Gamma \vdash t_1 t_2 : R$, then there is some type T_{11} such that $\Gamma \vdash t_1 : T_{11} \rightarrow R$ and $\Gamma \vdash t_2 : T_{11}$.
4. If $\Gamma \vdash \text{true} : R$, then $R = \text{Bool}$.
5. If $\Gamma \vdash \text{false} : R$, then $R = \text{Bool}$.
6. If $\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R$, then $\Gamma \vdash t_1 : \text{Bool}$ and $\Gamma \vdash t_2, t_3 : R$. \Box

Exercise: Is there any context Γ and type T such that $\Gamma \vdash x : T$?
Uniqueness of Types

- **Theorem** [Uniqueness of Types]: In a given typing context Γ, a term t (with free variables all in the domain of Γ) has at most one type. Moreover, there is just one derivation of this typing built from the inference rules that generate the typing relation.
Canonical Form

• **Lemma** [Canonical Forms]:
 – If v is a value of type Bool, then v is either true or false.
 – If v is a value of type $T_1 \rightarrow T_2$, then $v = \lambda x : T_1 . t_2$.
Progress

- **Theorem [Progress]**: Suppose t is a closed, well-typed term (that is, $\vdash t : T$ for some T). Then either t is a value or else there is some t' with $t \rightarrow t'$.

Proof: By induction on typing derivations.
Two Structural Lemmas

• **Lemma [Permutation]:** If $\Gamma \vdash t : T$ and Δ is a permutation of Γ, then $\Delta \vdash t : T$.

• **Lemma [Weakening]:** If $\Gamma \vdash t : T$ and x is not in $\text{dom}(\Gamma)$, then $\Gamma, x:S \vdash t : T$.

Note: All can be easily proved by induction on derivation
Preservation

• **Lemma** [Preservation of types under substitution]: If $\Gamma, x:S \vdash t:T$ and $\Gamma \vdash s:S$, then $\Gamma \vdash [x \rightarrow s]t:T$.

Proof: By induction on derivation of $\Gamma, x:S \vdash t:T$.

• **Theorem** [Preservation]: If $\Gamma \vdash t:T$ and $t \rightarrow t'$, then $\Gamma \vdash t':T$.
The Curry-Howard Correspondence

- A connection between logic and type theory

<table>
<thead>
<tr>
<th>LOGIC</th>
<th>PROGRAMMING LANGUAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>propositions</td>
<td>types</td>
</tr>
<tr>
<td>proposition $P \supset Q$</td>
<td>type $P \rightarrow Q$</td>
</tr>
<tr>
<td>proposition $P \land Q$</td>
<td>type $P \times Q$ (see §11.6)</td>
</tr>
<tr>
<td>proof of proposition P</td>
<td>term t of type P</td>
</tr>
<tr>
<td>proposition P is provable</td>
<td>type P is inhabited (by some term)</td>
</tr>
</tbody>
</table>
Erasure and Typability

• Types are used during type checking, but do not appear in the compiled form of the program.

DEFINITION: The *erasure* of a simply typed term t is defined as follows:

$$
erase(x) = x$$
$$
erase(\lambda x : T_1 . t_2) = \lambda x . erase(t_2)$$
$$
erase(t_1 \ t_2) = erase(t_1) \ erase(t_2)$$

THEOREM:

1. If $t \rightarrow t'$ under the typed evaluation relation, then $erase(t) \rightarrow erase(t')$.

2. If $erase(t) \rightarrow m'$ under the typed evaluation relation, then there is a simply typed term t' such that $t \rightarrow t'$ and $erase(t') = m'$.
Curry-Style vs. Church-Style

• Curry Style
 – Syntax \rightarrow Semantics \rightarrow Typing
 – Semantics is defined on untyped terms
 – Often used for implicit typed languages

• Church Style
 – Syntax \rightarrow Typing \rightarrow Semantics
 – Semantics is defined only on well-typed terms
 – Often used for explicit typed languages
Homework

• Read Chapter 9.
• Do Exercise 9.3.9.

9.3.9 Theorem [Preservation]: If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$. □

Proof: Exercise [Recommended, ★★★]. The structure is very similar to the proof of the type preservation theorem for arithmetic expressions (8.3.3), except for the use of the substitution lemma. □