
編程語言的設計原理

Design Principles of Programming Languages

Haiyan Zhao, Zhenjiang Hu, Yingfei Xiong

赵海燕、胡振江、熊英飞

Peking University, Spring Term, 2017

1

Self-Introduction

2

Zhenjiang Hu

3
http://www.research.nii.ac.jp/~hu

About Me

• 1988: BS, Computer Science, Shanghai Jiaotong Univ.

• 1991: MS, Computer Science, Shanghai Jiaotong Univ.

• 1996: PhD, Information Engineering, Univ. of Tokyo

• 1996: Assistant Professor, Univ. of Tokyo

• 1997: Lecturer, Univ. of Tokyo

• 2000: Associate Professor, Univ. of Tokyo

• 2008: Full Professor, National Institute of Informatics

北京大学海外杰青(2006-2008)

北京大学长江学者教授(2013.12-)

4

Research Interest

• Functional Programming
– Calculating Efficient Functional Programs

– ACM ICFP 2011 General Co-Chair

– ACM ICFP Steering Committee Co-Chair (2012-2013)

– AMC Haskell Symposium Steering Committee Member (2014-)

• Algorithmic Languages and Calculi
– Parallel programming and Automatic Parallelization

– IFIP WG 2.1 Member (IFIP TC 2, Japan Representative)

• Bidirectional Transformation Languages in SE
– Bidirectional languages for software evolution

– Steering Committee Member of BX, ICMT

5

About Prof. Zhao

6

• 2003 : PhD, Univ. of Tokyo

• 2003 - : Associate Professor, Peking Univ.

• Research Interest

– Software engineering

– Requirements Engineering, Requirements reuse in particular

– Model transformations

– Programming Languages

• Contact:

– Office: Rm. 1809, Science Blg #1

– Email： zhhy@sei.pku.edu.cn

– Phone： 62757670

About Prof. Xiong

• 2009: PhD, Univ. of Tokyo

• 2009-2011: Postdoc, Univ. of Waterloo

• 2012: 百人计划研究员, Peking Univ.

• Research Interest

– Fault Localization & Repair

• Contact:

– 理科一号楼1431房间

– Mail：xiongyf@pku.edu.cn

– Tel：62757008

7

Course Overview

8

What is this course about?

• Study fundamental (formal) approaches to describing
program behaviors that are both precise and abstract.

– precise so that we can use mathematical tools to formalize and
check interesting properties

– abstract so that properties of interest can be discussed clearly,
without getting bogged down in low-level details

9

What you can get out of this course?

• A more sophisticated perspective on programs,
programming languages, and the activity of
programming
– How to view programs and whole languages as formal,

mathematical objects

– How to make and prove rigorous claims about them

– Detailed study of a range of basic language features

• Powerful tools/techniques for language design,
description, and analysis

10

This course is not about …

• An introduction to programming

• A course on compiler

• A course on functional programming

• A course on language paradigms/styles

11

All the above are certainly helpful for your
deep understanding of this course.

What background is required?

• Basic knowledge on
– Discrete mathematics: sets, functions, relations, orders

– Algorithms: list, tree, graph, stack, queue, heap

– Elementary logics: propositional logic, first-order logic

• Familiar with a programming language and basic
knowledge of compiler construction

12

Textbook

• Types and Programming Languages

• 作者: Benjamin Pierce

• 出版社: The MIT Press

• 出版年: 2002-02-01

• 页数: 648

• 定价: USD 72.00

• 装帧: Hardcover

• ISBN: 9780262162098

13

Outline

• Basic operational semantics and proof techniques

• Untyped Lambda calculus

• Simple typed Lambda calculus

• Simple extensions (basic and derived types)

• References

• Exceptions

• Subtyping

• Recursive types

• Polymorphism

14

Grading

• Activity in class: 20%

• Homework: 40%

• Final (Report/Presentation): 40%

15

设计一个带类型系统的程序语言，解决实践中的问题，给出基本实现
• 设计一个语言，保证永远不会发生内存/资源泄露。
• 设计一个汇编语言的类型系统
• 设计一个没有停机问题的编程语言
• 设计一个嵌入复杂度表示的类型系统，

保证编写的程序的复杂度不会高于类型标示的复杂度。
• 设计一个类型系统，使得敏感信息永远不会泄露。
• 设计一个类型系统，使得写出的并行程序没有竞争问题
• 设计一个类型系统，保证所有的浮点计算都满足一定精度要求
• 解决自己研究领域的具体问题

How to study this course?

• Before class: scanning through the chapters to learn and
gain feeling about what will be studied

• In class: trying your best to understand the contents and
speaking out when you have questions

• After class: doing exercises seriously

16

Personnel

• Instructors
– Zhenjiang Hu, Professor, NII/PKU

hu@nii.ac.jp

– Haiyan Zhao, Associate Professor, PKU

zhhy@sei.pku.edu.cn

– Yingfei Xiong, Assistant Professor, PKU

xiongyf@pku.edu.cn

• Teaching Assistant:
– 周钊平，zhouzhaoping@pku.edu.cn

17

Information

• Course website:

http://sei.pku.edu.cn/~xiongyf04/DPPL/main.htm

– Syllabus

– News/Announcements

– Lecture Notes (slides)

– Other useful resources

18

Recommendation from a student

19

Chapter 1: Introduction

What is a type system?

What type systems are good for?

Type Systems and Programming Languages

20

Why type system?

• Art vs. Knowledge
– Art cannot be taught, while knowledge can

– What people have invented

– How to interpret them abstractly

– How to reason their properties formally

• Why formal reasoning important
– Poorly designed languages widely used

• Java array flaw

• PHP, Javascript, etc.

– Well designed language needs strictly reasoning

• Devils in details

21

The three worst programming languages:
https://medium.com/smalltalk-talk/the-three-worst-programming-languages-b1ec25a232c1#.jdsfib20v

What is a type system (type theory)?

• A type system is a tractable syntactic method for proving
the absence of certain (bad) program behaviors by
classifying phrases according to the kinds of values they
compute.

– Tools for program reasoning

– Fully automatic (and efficient)

– Classification of terms

– Static approximation

– Proving the absence rather than presence

22

What is a type system (type theory)?

• A type system is a tractable syntactic method for proving
the absence of certain (bad) program behaviors by
classifying phrases according to the kinds of values they
compute.

– Tools for program reasoning

– Fully automatic (and efficient)

– Classification of terms

– Static approximation

– Proving the absence rather than presence

23

Tractable：be finished in

short time, often

polynomial

Syntactic: be part of the

programming language

What is a type system (type theory)?

• A type system is a tractable syntactic method for proving
the absence of certain (bad) program behaviors by
classifying phrases according to the kinds of values they
compute.

– Tools for program reasoning

– Fully automatic (and efficient)

– Classification of terms

– Static approximation

– Proving the absence rather than presence

24

True, false Boolean

1, 2, 3, … Int

‘a’, ‘b’, ‘c’, … Char

What is a type system (type theory)?

• A type system is a tractable syntactic method for proving
the absence of certain (bad) program behaviors by
classifying phrases according to the kinds of values they
compute.

– Tools for program reasoning

– Fully automatic (and efficient)

– Classification of terms

– Static approximation

– Proving the absence rather than presence

25

• Given a property that correct programs should

satisfy, does this program satisfy it?

• Based on Rice’s theorem, we cannot precisely

answer the question on any non-trivial property

• Approximation method 1 (type checking): only

determine the program definitely satisfies a property

• Approximation method 2 (testing): only determine

the program definitely violates a property

• Can you give a correct program that cannot type-

check?

What are type systems good for?

• Detecting Errors

– Many programming errors can be detected early, fixed intermediately and
easily.

• Abstraction

– type systems form the backbone of the module languages: an interface
itself can be viewed as “the type of a module.”

• Documentation

– The type declarations in procedure headers and module interfaces
constitute a form of (checkable) documentation.

• Language Safety

– A safe language is one that protects its own abstractions.

• Efficiency

– Removal of dynamic checking; smart code-generation

26

Type Systems and Languages Design

• Language design should go hand-in-hand with type
system design.

– Languages without type systems tend to offer features that
make typechecking difficult or infeasible.

– Concrete syntax of typed languages tends to be more
complicated than that of untyped languages, since type
annotations must be taken into account.

In typed languages the type system itself is often taken as the
foundation of the design and the organizing principle in light of

which every other aspect of the design is considered.

27

Homework

• Read Chapters 1 and 2.

• Install OCaml and read “Basics”
– http://caml.inria.fr/download.en.html

– http://ocaml.org/learn/tutorials/basics.html

28

