e = HYaxs TIRIE
Design Principles of Programming Languages

Haiyan Zhao, Zhenjiang Hu, Yingfei Xiong
BB, SRR, RESRK

Peking University, Spring Term, 2017




N | | ez
Moo s of indarmai

Self-Introduction




Zhenjiang Hu

AFANEESNE, 9N 35 ENa.

E LR35 ST

Mokroernd uudmada. ol Brdsdimedi o

800 Zhenjiang Hu's home page |

+ | € research.nii.ac.jp/~hu/ [ R

Zhenjiang Hu

Professor

Programming Research Laboratory
Information Systems Architecture Research Division
National Institute of Informatics (INII)

Professor

Department of Informatics
The Graduate University for Advanced Studies

Ireceived BS and MS degrees from Department of Computer Science and Engineering of Shanghai Jiaotong Unviersity
in 1988 and 1991 respectively, and Ph.D degree from Department of Information Engineering of University of Tokyo in
1996. I became a lecturer (assistant professor) in 1997 and an associate professor in 2000 in University of Tokyo. I joined
National Institute of Informatics as a full professor in 2008,

Research

My main interest is in programming languages and software construction in general, and functional programming,
program transformation and model driven software development in particular. I am very interested in program calculation
based on programming algebras, and I am looking into how to apply this theory to automatic program optimization,
systematic parallelization of sequential programs, efficient manipulation of structured documents, and bidirectional model
transformation for software development.

Currently, I have a post-doc position available for those who are interested in bidirectional transformation.
I'welcome excellent people to join my group as intern students, PhD students, or post-doc researchers (JSPS
Fellowship Program and DAAD-NII Program).

http://www.research.nii.ac.jp/~hu




About Me NI iz

e 1988: BS, Computer Science, Shanghai Jiaotong Univ.
e 1991: MS, Computer Science, Shanghai Jiaotong Univ.
e 1996: PhD, Information Engineering, Univ. of Tokyo

e 1996: Assistant Professor, Univ. of Tokyo

e 1997: Lecturer, Univ. of Tokyo

e 2000: Associate Professor, Univ. of Tokyo

e 2008: Full Professor, National Institute of Informatics

LR KRFBININE(2006-2008)
IERAFRKTIFEEZIR(2013.12-)




Research Interest \ ||

e Functional Programming
— Calculating Efficient Functional Programs
— ACM ICFP 2011 General Co-Chair
— ACM ICFP Steering Committee Co-Chair (2012-2013)
— AMC Haskell Symposium Steering Committee Member (2014-)

e Algorithmic Languages and Calculi

— Parallel programming and Automatic Parallelization
— IFIP WG 2.1 Member (IFIP TC 2, Japan Representative)

e Bidirectional Transformation Languages in SE
— Bidirectional languages for software evolution
— Steering Committee Member of BX, ICMT




About Prof. Zhao

NII=EE

HESENEL 9§ 37 @nEa

AL SESE R SR

e 2003 : PhD, Univ. of Tokyo
e 2003 - : Associate Professor, Peking Univ.

e Research Interest
— Software engineering
— Requirements Engineering, Requirements reuse in particular
— Model transformations
— Programming Languages

e (Contact:
— Office: Rm. 1809, Science Blg #1
— Email : zhhy@sei.pku.edu.cn

— Phone : 62757670




About Prof. Xiong

e 2009: PhD, Univ. of Tokyo
e 2009-2011: Postdoc, Univ. of Waterloo
e 2012: B AITRIAAZER, Peking Univ.

e Research Interest

— Fault Localization & Repair

e (Contact:
- ER—51#214315E8)
— Mail : xiongyf@pku.edu.cn
— Tel : 62757008

N | | ESiszass




N | | ez
Moo s of indarmai

Course Overview




What is this course about? N | | ezmsZaise

e Study fundamental (formal) approaches to describing
program behaviors that are both precise and abstract.

— precise so that we can use mathematical tools to formalize and
check interesting properties

— abstract so that properties of interest can be discussed clearly,
without getting bogged down in low-level details




What you can get out of this course? \ || BT

e A more sophisticated perspective on programs,
programming languages, and the activity of
programming

— How to view programs and whole languages as formal,
mathematical objects

— How to make and prove rigorous claims about them

— Detailed study of a range of basic language features

e Powerful tools/techniques for language design,
description, and analysis

10




This course is not about ... \ ||

e An introduction to programming

e A course on compiler

e A course on functional programming

e A course on language paradigms/styles

All the above are certainly helpful for your
deep understanding of this course.

11




What background is required? N | | ez

e Basic knowledge on
— Discrete mathematics: sets, functions, relations, orders
— Algorithms: list, tree, graph, stack, queue, heap
— Elementary logics: propositional logic, first-order logic

e Familiar with a programming language and basic
knowledge of compiler construction

12




Textbook

e Types and Programming Languages
e {E&: Benjamin Pierce

o HAR%L: The MIT Press

e HAREE: 2002-02-01

o TUZX: 648

o TEAT: USD 72.00

e ZXMNi: Hardcover

e |SBN: 9780262162098

13

Types and

Programming

Languages




Outline N | | Exhisaises

e Basic operational semantics and proof techniques
e Untyped Lambda calculus

e Simple typed Lambda calculus

e Simple extensions (basic and derived types)

e References

e Exceptions

e Subtyping

e Recursive types

e Polymorphism

14




Grading N | | EEmasass

15

Activity in class: 20%
Homework: 40%

Final (Report/Presentation): 40%

RIT— THRERFNIEFIES, FRCETREM, [HEEARSC)

®i—TEES, FRIbEKEArAaRERF/REHE,

RiT— TCmE SRR R

it — B EN RN RIEIES

I — TR A BZER R ’J*'*’*”%éﬁ
RIERENEFNEXE A TR EZE,

RIT— 1T EEIRGE, [F5 ’ﬂ_ifU_W.:,u 7]<L7i_ SIHEE,

I 1B RS, FEERNHITERSER SO

I — TR, FIEFMENZERiTEENHEE —EREEK

fiRRE S AT IR BERRIRT




How to study this course? \ || BT

16

Before class: scanning through the chapters to learn and
gain feeling about what will be studied

In class: trying your best to understand the contents and
speaking out when you have questions

After class: doing exercises seriously

* Quick check 30 seconds to 5 minutes
* % Easy < 1 hour
* % % Moderate < 3 hours

* KKk Challenging > 3 hours




Personnel

e Instructors
— Zhenjiang Hu, Professor, NIlI/PKU
hu@nii.ac.jp
— Haiyan Zhao, Associate Professor, PKU
zhhy@sei.pku.edu.cn
— Yingfei Xiong, Assistant Professor, PKU
xiongyf@pku.edu.cn

e Teaching Assistant:
— B, zhouzhaoping@pku.edu.cn

17

NIl s




Information

e Course website:
http://sei.pku.edu.cn/~xiongyf04/DPPL/main.htm

— Syllabus

— News/Announcements
— Lecture Notes (slides)

— Other useful resources

18

lllllllllllllllllll




Recommendation from a student

19

AFANEESNE, 9N 35 ENa.

I_zflﬁ#ﬁﬁﬁﬁ

ABRAF
EFAFRHFTEHSRETBE
FEINEE 2 9F - EERE s
EF2R 5 TEE
SRy BEETAAEAKRE? ?fj;
Wt
A FEEE 18 AER

REEsaRiEE © RESSINEHRE SR SR XER Rt
X : R BERRIFRSm

HIEFRIEHAETAPL , Types and Programming Languages =, HRS8 | HbLhEE 5 7—
LeE b AR A -RR SRR recursive typingEEI—EHAERNH.

=N FSEEEPLAENFSE | #EANE S  MEsERSIIEFIRENRE | B2
HTHTPLAST (A2 BIETRESSIAIRN E585ER.

BRoEEENES S MEERAAEERFES TormalidexambbEET.

SRRSO ITREARESITER « BRI AORS | Nzth2FE . BFEedis b,
@R K

fmET 2016-12-25 & i

[1'.'.
I"-')‘
=
III
e
Jlll
o
i
i
iy




NII

E it ¥R 5 5EPh
(Frcnsi numat ol o

Chapter 1: Introduction

What is a type system?
What type systems are good for?
Type Systems and Programming Languages

20




Why type system? N | | Exhisaises

e Artvs. Knowledge
— Art cannot be taught, while knowledge can
— What people have invented
— How to interpret them abstractly
— How to reason their properties formally

e Why formal reasoning important
— Poorly designed languages widely used
e Java array flaw
e PHP, Javascript, etc.
— Well designed language needs strictly reasoning
e Devils in details

The three worst programming languages:
https://medium.com/smalltalk-talk/the-three-worst-programming-languages-blec25a232c1#.jdsfib20v

21




What is a type system (type theory)? N | | etz

e Atype system is a tractable syntactic method for proving
the absence of certain (bad) program behaviors by
classifying phrases according to the kinds of values they
compute.

— Tools for program reasoning

— Fully automatic (and efficient)

— Classification of terms

— Static approximation

— Proving the absence rather than presence

22




What is a type system (type theory)? N | | etz

e Atype system is a tractable syntactic method for proving
the absence of certain (bad) program behaviors by
classifying phrases according to the kinds of values they

23

compute.

— Tools for program reasoning
— Fully automatic (and efficient)
— Classification of terms

— Static approximation

— Proving the absence rather than pr

Tractable : be finished in
short time, often
polynomial

Syntactic: be part of the
programming language




What is a type system (type theory)? N | | etz

e Atype system is a tractable syntactic method for proving
the absence of certain (bad) program behaviors by
classifying phrases according to the kinds of values they
compute.

— Tools for program reasoning

— Fully automatic (and efficient) True, false  Boolean
— Classification of terms 1,2,3, ... Int
— Static approximation a, b, c,... Char

— Proving the absence rather than presence

24




25

Given a property that correct programs should
satisfy, does this program satisfy it?
Based on Rice’s theorem, we cannot precisely
answer the question on any non-trivial property
Approximation method 1 (type checking): only
determine the program definitely satisfies a property
Approximation method 2 (testing): only determine
the program definitely violates a property
Can you give a correct program that cannot type-
check?

— Static approximation

— Proving the absence rather than presence

A
5 B H



What are type systems good for? N | | Eztszass

Detecting Errors

— Many programming errors can be detected early, fixed intermediately and
easily.

e Abstraction

— type systems form the backbone of the module languages: an interface
itself can be viewed as “the type of a module.”

e Documentation

— The type declarations in procedure headers and module interfaces
constitute a form of (checkable) documentation.

e lLanguage Safety
— A safe language is one that protects its own abstractions.
e Efficiency

— Removal of dynamic checking; smart code-generation

26




Type Systems and Languages Design N | | etz

e Language design should go hand-in-hand with type
system design.

— Languages without type systems tend to offer features that
make typechecking difficult or infeasible.

— Concrete syntax of typed languages tends to be more
complicated than that of untyped languages, since type
annotations must be taken into account.

In typed languages the type system itself is often taken as the
foundation of the design and the organizing principle in light of

which every other aspect of the design is considered.

27




Homework

e Read Chapters 1 and 2.

e Install OCaml and read “Basics”
— http://caml.inria.fr/download.en.html
— http://ocaml.org/learn/tutorials/basics.html

28

NI iz




