AVARNSARAL AN LAPAPREN
e

N | | E T R FE PR
Notionod lastitute of Indormotics

Design Principles of Programming Languages

Practices in Class

Chap 13-19

Zhenjiang Hu, Haiyan Zhao, Yingfei Xiong
Peking University, Spring Term, 2016

Code packages

| || JEEEL I

(5152 1A 885 A FE P

[Nosional lautivate of Indcrmatis |

— “fullref”

— “fullerror”
— “rcdsub”

— “fullsub”

— “joinsub”

NI | Eissa

Syntax

We added to A_, (with Unit) syntactic forms for creating,
dereferencing, and assigning reference cells, plus a new
type constructor Ref.

t = terms
unit unit constant
X variable
Ax:T.t abstraction
t t application
A 3T reference creafion |
1t dereference |
i t:=t assignment
|

/ store location

oo - oo e - e e Ee Ee EE Ew o EE e e O S e S e EEn e EEm S EEm B EEm BEm e EEm S EEm B EEm Eam B e

NI s

sonad lautidate of crmot

Evaluation

Evaluation becomes a four-place relation: t|p — t' |

| & dom(p)

E-REFV
ref vi|p— 1| (g, — vq) ()
(/) =
pll) = v (E-DEREFLOC)
Vlp —v|p

[:=vy | p — unit | [[— vo]u (E-ASSIGN)

N | | B 845 B 5P

Typing

Typing becomes a three-place relation: ' | 2+ t: T

2() =Ty
(T-Loc)
(|2 F/:Ref Ty
Xkt : Ty
(T-REF)
[| L+ ref t1 : Ref Ty
[|2 Ft1:Ref T
‘ e (T-DEREF)
I'\Zi—!tllel
[|2 Fty :Ref T |2ty : T
‘ S——— | S (T-ASSIGN)

[|2 Ft1:=t2 : Unit

AVARNSARAA AN LATLIEREN
3 B

E SRR
MNotional lagtidgte of Mdcrmatics

-

Subtype Relation

S<:S (S-REFL)

S<:U U<: T
S<: T

(S-TRANS)

{1;:T; '€k} < {1;:T; '€} (S—RCDWIDTH)

foreach /i S;<: T;
{li . Si i€1..n} < {ll :Ti i€1..n}

(S-RcDDEPTH)

{k;:S;/$*"} is a permutation of {1;:T; €*-"}
{k_]:s_] j€1..n} < {lITI i€1..n}

(S-RcDPERM)

T1 <: Sy So < Tp
S1—Sy < T1—TH

(S-ARROW)

S <: Top (S-Top)

— <: Top Based on A-. (9-1)
Syntax Subtyping S<T
t = terms:
X variable S<tS (S-REFL)
Ax:T.t abstraction S<U U<T
tt application - — - (S-TRANS)
vV = values: .
AX:T.t abstraction value > < Top (5-ToP)
T <t S S, < T»
T = | types: S1=S, < T1—T» (S-ARROW)
Top maximum type
T-T type of functions | Typing =t:T
x:Tel
[o= contexts: —— (T-VAR)
@ empty context)
rx:T term variable binding [x:Tr=t2 0 T2 (T-ABS)
[EAX:T). .t : T —T>
Evaluation t—t [t :Tiu—Te Te=t:Tn
t; — t (T-APP)
1 (E-APP1) 't t T2
Tt — 1 ©
'—t:S S<T
t2 — t) - (T-SUB)
= (E-APP2) et T

V) to — V) té

(Ax:Ti1.t12) v2 — [x — v2]t12 (E-APPARS)

i

N AD

Nbc-ﬂdlll“ olNuM

N | | Eshissass

Records

- 1 Extends A . (9-1)
| 1
New syntactic forms t] — t
t o= .. | terms: 01— 1.1 (E-PROJ)
{1li=t; ="} record ,
t.] projection t— % E-RCD
{]1=V1 iel.. j-1 , 1j=tj , '|k=tk kej+l..n} ()
Vo= . values: | — {1i=vi =", 1=t} Ti=ty*"}
{li=v; =t} record value | .., typing rules FT—t:T
foreachi TI'~t;: T;
T == .. types: — '. ’ — (T-RCD)
r - tl . {’I . -T. iél..n}
New evaluation rules t— t [-t.1:T; (T-PROJ)
{li=vi <315 — v; (E-PROJRCD)

AVARNSARAL AN LATLIERAN
3 B

E SRR
Notional lactidate of MWormatics

“Algorithmic” subtype relat@!H

' 1S <: Top (SA-Top)

» T1 < S » Sy <: T»
> S1—Sy < T1—T»

(SA-ARROW)

1; '€l C [g; J€1-m foreachk; =1; b S; < T;
| j j j

— — (SA-RcD)
> {k;:S; /€M) < {1;:T; €
ec’“mp@vs
v :
o N\

V[

Subtyping Algorithm

This recursively defined total function is a decision
procedure for the subtype relation:

subtype(S, T) =
if T = Top, then true
elseifS = §; —= S, andT =T, —» T,
then subtype(Ty,S1) A subtype(S,, T,)
elseifS = {k;: S/ ™Yand T = {I;: T/ €'
then {lii61..1’1} C {k1161m}

A foralli € 1..n thereissomej € 1..mwith k; =1
and subtype(S;, Tj)

else false.

NI iz

Algorithmic Typing

The next step is to “build in” the use of subsumption in application
rules, by changing the T-App rule to incorporate a subtyping
premise.

[t1 : T11—T1o [=ty : T - Ty < T11
[Ft1 to: Tpo

Given any typing derivation, we can now

1. normalize it, to move all uses of subsumption to either just
before applications (in the right-hand premise) or at the very
end

2. replace uses of T-App with T-SUB in the right-hand premise
by uses of the extended rule above

subsumption, at the very end!

El.Lf!#E-?—EﬂnPﬁ

What learnt in Chap 18-19 < NI==

1. ldentify some characteristic “core features” of object-
oriented programming

2. Develop two different analysis of these features:

2.1 Atranslation into a lower-level language

2.2 Adirect, high-level formalization of a simple object-
oriented language (“Featherweight Java”)

Object-oriented languages

N || iz

132 R 8B F R FE P

[Noticncl lautibate of Indormatics |

Most OO languages treats each object as
A data structure
* encapsulating some internal states
e offering access to thesse states
via a collection of methods.

basic features of object-oriented languages
encapsulation
Inheritance

Ki
el

UNIp

-189%-

"1 IS’&(’}

Modeling features of OO with A -L

How the basic features of object-oriented languages
encapsulation of state
Inheritance

can be understood as “derived forms” in a lower-level
language with a rich collection of primitive features:

(higher-order) functions
records

references

recursion

subtyping

UNT P

Ki
el
’Q lSﬁQ}

-189%-

NIl Essas

Encapsulation

An object is a record of functions, which maintain
common internal state via a shared reference to a record
of mutable instance variables.

This state is inaccessible outside of the object because
there is no way to name it.

— lexical scoping ensures that instance variables can
only be named from inside the methods.

NIz

Inheritance

Objects that share parts of their interfaces will typically
(though not always) share parts of their behaviors.

To avoid duplication of code, the way is to write the
implementations of these behaviorsin just one place.

= jnheritance
Basic mechanism of inheritance: classes
A class is a data structure that can be

— instantiated to create new objects (“instances”)
— refined to create new classes (“subclasses”)

NI | Eissa

The essence of objects

» Encapsulation of state with behavior

» Behavior-based subtyping

» Inheritance (incremental definition of behaviors)
» Access of super class

» Open recursion through this

NI iz

Featherweight Java

A concrete language with core OO features

FJ models “core OO features” and their types and nothing else.

History:
— Originally proposed by a Penn visiting student (Atsushi Igarashi)
as a tool for analyzing GJ (“Java plus generics”), which later
became Java 1.5

— Since then used by many others for studying a wide variety of
Java features and proposed extensions

Practice #1 N |z

* Do exercise 18.6.1

— Write a subclass of resetCounterClass with an additional
method dec that subtracts one from the current value stored
in the counter.

— Use the fullref checker to test your new class.

NI sz

Practice #2

* Do exercise 18.7.1

— Define a subclass of backupCounterClass with two new
methods, reset? and backup2, controllinga second “backup
register.” This register should be completely separate from
the one added by backupCounterClass: calling reset should
restore the counter to its value at the time of the last call to
backup (as it does now) and calling reset2 should restore the
counterto its value at the time of the last call to backup2.

— Use the fullref checker to test your new class

NI | Exnzess

Practice #3

* Do exercise17.3.1

— The joinexercise typechecker is an incomplete implementation of
the simply typed lambda-calculus with subtyping, records, and
conditionals: basicparsingand printing functions are provided, but
the clause for Tmlf is missing from the typeof function, as is the
join function on which it depends. Add booleans and conditionals
(and joins and meets) to this implementation.

— Referto: § 16.3 showed how adding booleans and conditionals to
a language with subtypingrequired extra supportfunctions for
calculating the least upper bounds of a given pair of types. The
proof of Proposition 16.3.2 (see page 522) gave mathematical
descriptions of the necessary algorithms

NIz

Practice #4

e Doexercise17.3.3

— If the subtype check in the application rule fails, the error
message that our typechecker prints may not be very helpful
to the user. We can improve it by includingthe expected
parameter type and the actual argument type in the error
message, but even this may be hard to understand.

— Reimplementthe typeof and subtype functions to make all of
the error messages as informative as possible.

