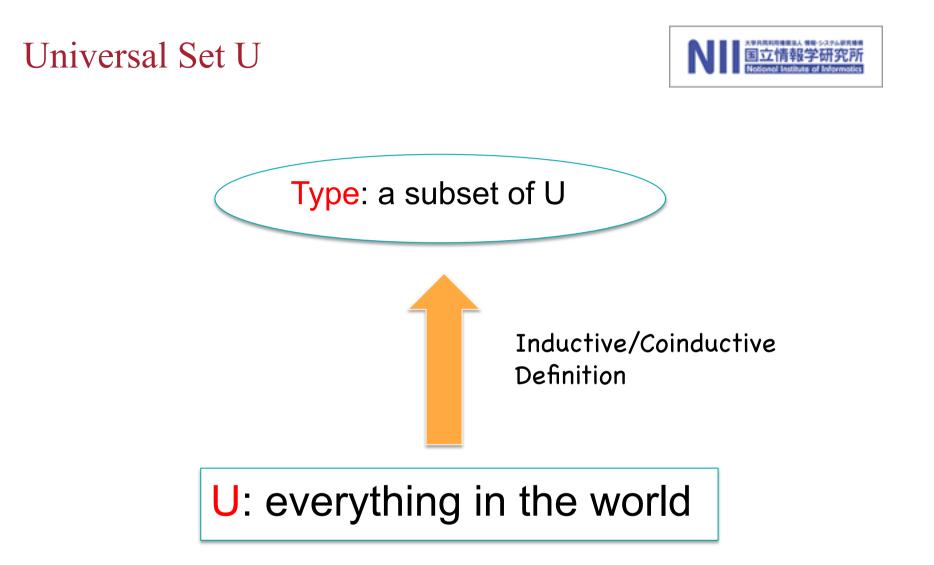


Chapter 21: Metatheory of Recursive Types

Induction and Coinduction Finite and Infinite Types/Subtyping Membership Checking

21.1 Induction and Coinduction



Generating Function

- Definition: A function $F \in P(U) \rightarrow P(U)$ is monotone if $X \subseteq Y$ implies $F(X) \subseteq F(Y)$.
- Definition: Let F be monotone, and X be a subset of U.
 - X is F-closed if $F(X) \subseteq X$.
 - X is F-consistent if $X \subseteq F(X)$.
 - X is a fixed point of F if F(X) = X.

b

Exercise: Consider the following generating function on the three-element universe $U=\{a, b, c\}$:

$$E1(\emptyset) = \{c\}$$

$$E1(\{a\}) = \{c\}$$

$$E1(\{b\}) = \{c\}$$

$$E1(\{c\}) = \{b, c\}$$

$$E1(\{c\}) = \{b, c\}$$

$$C$$

$$E1(\{a, b\}) = \{c\}$$

$$E1(\{a, c\}) = \{b, c\}$$

$$E1(\{a, c\}) = \{a, b, c\}$$

$$E1(\{a, b, c\}) = \{a, b, c\}$$

Q: Which subset is E1-closed, E1-consistent?

Knaster-Tarski Theorem (1955)

Theorem

- The intersection of all F-closed sets is the least fixed point of F.
- The union of all F-consistent sets is the greatest fixed point of F.

Definition: The least fixed point of F is written μ F. The greatest fixed point of F is written ν F.

Exercise: Consider the following generating function on the three-element universe U={a, b, c}:

c}

E1(
$$\varnothing$$
) = {c}
E1({a}) = {c}
E1({b}) = {c}
E1({b}) = {b, c}
E1({c}) = {b, c}
E1({a,b}) = {c}
E1({a, c}) = {b, c}
E1({b, c}) = {b, c}
E1({b, c}) = {a, b, c}
E1({a, b, c}) = {a, b, c}
C: What are μ E1 and ν E1?

$$\frac{c}{b} = \frac{b}{a}$$

Exercise: Suppose a generating function E2 on the universe {a, b, c} is defined by the following inference rules:

$$\frac{c}{a} \quad \frac{a}{b} \quad \frac{b}{c}$$

Q: Write out the set of pairs in the relation E2 explicitly, as we did for E1 above. List all the E2-closed and E2-consistent sets. What are μ E2 and ν E2?

Principles of Induction/Coinduction

Corollary:

• Principle of induction:

If X is F-closed, then $\mu F \subseteq X$.

• Principle of coinduction:

If X is F-consistent, then $X \subseteq \nu F$.

The induction principle says that any property whose characteristic set is closed under F is true of all the elements of the inductively defined set μ F.

The coinduction principle, gives us a method for establishing that an element x is in the coinductively defined set ν F.

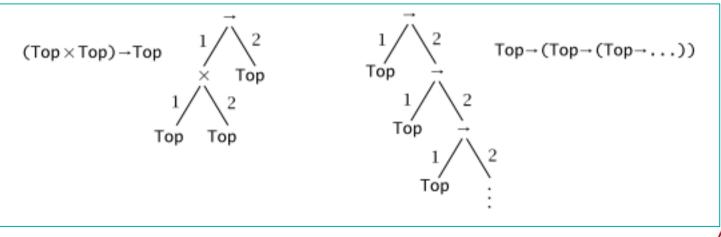
21.2 Finite and Infinite Types

To instantiate the general definitions of greatest fixed points and the coinductive proof method with the specifics of subtyping.

Tree Type

Definition: A tree type (or, simply, a tree) is a partial function

- $T \in \{1,2\}* \longrightarrow \{\rightarrow, \times, Top\}$ satisfying the following constraints:
- T(•) is defined;
- if $T(\pi, \sigma)$ is defined then $T(\pi)$ is defined;
- if $T(\pi) = \rightarrow$ or $T(\pi) = \times$ then $T(\pi, 1)$ and $T(\pi, 2)$ are defined;
- if $T(\pi) = Top$ then $T(\pi, 1)$ and $T(\pi, 2)$ are undefined.



Note: T(.) = Top

Definition: A tree type T is finite if dom(T) is finite. The set of all tree types is written T; the subset of all finite tree types is written T_f .

Exercise: Give a universe U and a generating function $F \in P(U) \rightarrow P(U)$ such that the set of finite tree types T_f is the least fixed point of F and the set of all tree types T is its greatest fixed point.

21.3 Subtyping

Finite Subtyping

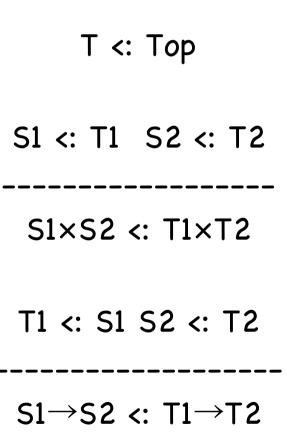
Definition: Two finite tree types S and T are in the subtype relation ("S is a subtype of T") if $(S,T) \in \mu S_f$, where the monotone function

 $\mathsf{S}_\mathsf{f} \in \mathsf{P}(\mathcal{T}_\mathsf{f} \times \mathcal{T}_\mathsf{f}) \to \mathsf{P}(\mathcal{T}_\mathsf{f} \times \mathcal{T}_\mathsf{f})$

is defined by

```
\begin{split} \mathsf{S}_{\mathsf{f}}(\mathsf{R}) &= \{ (\mathsf{T},\mathsf{Top}) \mid \mathsf{T} \in \mathcal{T}_{\mathsf{f}} \} \\ & \cup \{ (\mathsf{S1} \times \mathsf{S2}, \mathsf{T1} \times \mathsf{T2}) \mid (\mathsf{S1},\mathsf{T1}), (\mathsf{S2},\mathsf{T2}) \in \mathsf{R} \} \\ & \cup \{ (\mathsf{S1} \rightarrow \mathsf{S2}, \mathsf{T1} \rightarrow \mathsf{T2}) \mid (\mathsf{T1},\mathsf{S1}), (\mathsf{S2},\mathsf{T2}) \in \mathsf{R} \}. \end{split}
```


Inference Rules



Infinite Subtyping

Definition: Two (finite or infinite) tree types S and T are in the subtype relation ("S is a subtype of T") if $(S,T) \in \nu S$, where the monotone function

 $\mathsf{S} \in \mathsf{P}(\mathcal{T} \times \mathcal{T} \) \to \mathsf{P}(\mathcal{T} \times \mathcal{T} \)$

is defined by

```
\begin{split} \mathsf{S}(\mathsf{R}) &= \{(\mathsf{T},\mathsf{T}op) \mid \mathsf{T} \in \mathcal{T}' \} \\ & \cup \{(\mathsf{S}1 \times \mathsf{S}2,\mathsf{T}1 \times \mathsf{T}2) \mid (\mathsf{S}1,\mathsf{T}1), (\mathsf{S}2,\mathsf{T}2) \in \mathsf{R}\} \\ & \cup \{(\mathsf{S}1 \rightarrow \mathsf{S}2,\mathsf{T}1 \rightarrow \mathsf{T}2) \mid (\mathsf{T}1,\mathsf{S}1), (\mathsf{S}2,\mathsf{T}2) \in \mathsf{R}\}. \end{split}
```


Transitivity

Definition: A relation $R \subseteq U \times U$ is transitive if R is closed under the monotone function $TR(R) = \{(x,y) \mid \exists z \in U. (x,z), (z,y) \in R\},\$ i.e., if $TR(R) \subseteq R$.

Lemma: Let $F \in P(U \times U) \rightarrow P(U \times U)$ be a monotone function. If $TR(F(R)) \subseteq F(TR(R))$ for any $R \subseteq U \times U$, then νF is transitive.

Theorem: ν S is transitive.

The possibility of giving a declarative presentation with the rule of transitivity turns out to be a consequence of a "trick" that can be played with inductive, but not coinductive, definitions.

- The union of two sets of rules, when applied inductively, generates the least relation that is closed under both sets of rules separately.
- Adding transitivity to the rules generating a coinductively defined relation always gives us a degenerate relation.

21.5 Membership Checking

Given a generating function F on some universe U and an element $x \in U$, check whether or not x falls in ν F.

Definition: A generating function F is said to be invertible if, for all $x \in U$, the collection of sets $G_x = \{X \subseteq U \mid x \in F(X)\}$

either is empty or contains a unique member that is a subset of all the others.

We will consider invertible generating function in the rest of this chapter.

F-Supported/F-Ground

When F is invertible, we define:

$$support_{F}(x) = \begin{cases} X & \text{if } X \in G_{X} \text{ and } \forall X' \in G_{X}. X \subseteq X' \\ \uparrow & \text{if } G_{X} = \emptyset \end{cases}$$

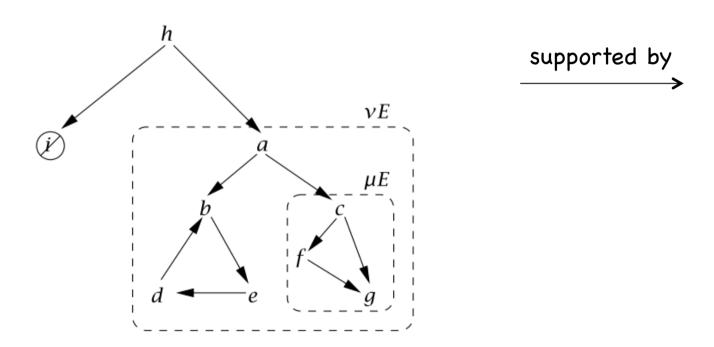
$$support_{F}(X) = \begin{cases} \bigcup_{x \in X} support_{F}(x) & \text{if } \forall x \in X. support_{F}(x) \\ \uparrow & \text{otherwise} \end{cases}$$

Definition: An element x is F-supported if support_F(x) \downarrow ; otherwise, x is F- unsupported. An F-supported element is called F-ground if support_F(x) = \emptyset .

```
Exercise: What is support<sub>s</sub>(x)?
```


Support Graph

 An Example of the support graph of E function on {a,b,c,d,e,f,g,h,i}



x is in the greatest fixed point iff no unsupported element is reachable from x in the support graph.

Greatest Fixed Point

Definition: Suppose F is an invertible generating function. Define the boolean-valued function gfp_F (or just gfp) as follows:

 $\begin{array}{ll} gfp(X) &=& \text{if } support(X) \uparrow, \text{then } false \\ & \text{else if } support(X) \subseteq X, \text{ then } true \\ & \text{else } gfp(support(X) \cup X). \end{array}$

Theorem (Sound):

- 1. If $gfp_F(X) = true$, then $X \subseteq \nu F$.
- 2. 2. If $gfp_F(X) = false$, then $X \subseteq \nu F$.

Theorem (Terminate): If reachable_F(X) is finite, then $gfp_F(X)$ is defined. Consequently, if F is finite state, then $gfp_F(X)$ terminates for any finite X $\subseteq U$.

More Efficient Algorithms

Inefficiency

Recomputation of "support"

gfp({a})

- = gfp({a, b, c})
- = gfp({a, b, c, e, f,g})
- = gfp({a, b, c, e, f,g,d})
- = true

support(a) is recomputed four times!

A More Efficient Algorithm

Definition: Suppose F is an invertible generating function. Define the function gfp^a as follows

$gfp^a(A, X) =$	if $support(X) \uparrow$, then <i>false</i>
	else if $X = \emptyset$, then <i>true</i>
	else $gfp^a(A \cup X, support(X) \setminus (A \cup X))$.

Tail-recursion

Example:

 $gfp^a(\emptyset, \{a\})$

- $= gfp^{a}(\{a\}, \{b, c\})$
- $= gfp^{a}(\{a, b, c\}, \{e, f, g\})$
- $= gfp^{a}(\{a, b, c, e, f, g\}, \{d\})$
- $= gfp^a(\{a,b,c,e,f,g,d\}, \emptyset)$
- *= true*.

Definition: A small variation on gfp^s has the algorithm pick just one element at a time from X and expand its support. The new algorithm is called gfp^s

 $gfp^{s}(A, X) = \text{if } X = \emptyset, \text{ then } true$ else let *x* be some element of *X* in if $x \in A$ then $gfp^{s}(A, X \setminus \{x\})$ else if $support(x) \uparrow \text{ then } false$ else $gfp^{s}(A \cup \{x\}, (X \cup support(x)) \setminus (A \cup \{x\})).$

Variation 2

Definition: Given an invertible generating function F, define the function gfp^{\dagger} as follows:

 $gfp^{t}(A, x) = if x \in A, then A$ else if $support(x) \uparrow$, then fail else $let \{x_{1}, \dots, x_{n}\} = support(x) in$ $let A_{0} = A \cup \{x\} in$ $let A_{1} = gfp^{t}(A_{0}, x_{1}) in$ \dots $let A_{n} = gfp^{t}(A_{n-1}, x_{n}) in$

Regular Trees

If we restrict ourselves to regular types, then the sets of reachable states will be guaranteed to remain finite and the subtype checking algorithm will always terminate.

Regular Trees

Definition: A tree type S is a subtree of a tree type T if $S = \lambda \sigma$. T(π, σ) for some π .

```
Definition: A tree type T \in T is regular if subtrees(T) is finite.
```

Examples:

- Every finite tree type is regular.
- $T = Top \times (Top \times (Top \times \cdots))$ is regular.

Proposition: The restriction of the generating function S to regular tree types is finite state.

Proof: We need to show that for any pair (S,T) of regular tree types, the set reachable(S,T) is finite. Since reachable (S,T) \subseteq subtrees(S) × subtrees(T); the latter is finite as S and T are regular.

μ -Types

Establishes the correspondence between subtyping on μ -expressions and the subtyping on tree types

μ-Types:

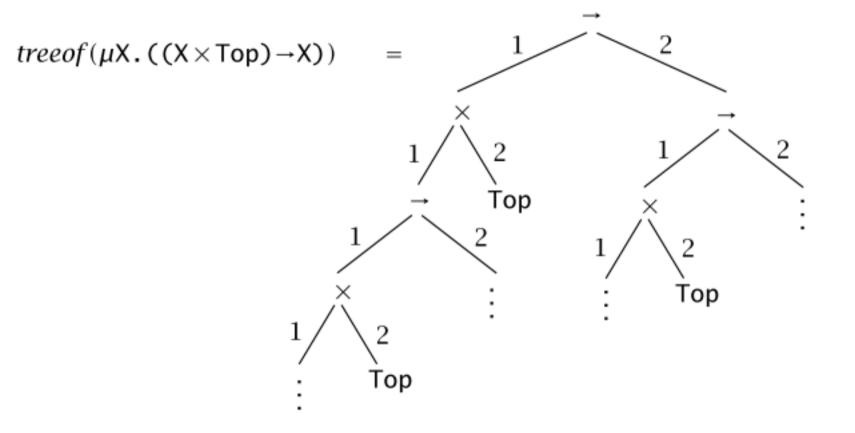
Definition: Let X range over a fixed countable set $\{X1, X2, ...\}$ of type variables. The set of raw μ -types is the set of expressions defined by the following grammar:

Definition: A raw μ -type T is contractive (and called μ -types) if, for any subexpression of T of the form $\mu X.\mu X1...\mu Xn.S$, the body S is not X.

Finite Notation for Infinite Tree Types

Definition: The function treeof , mapping closed μ types to tree types, is defined inductively as follows:

 $\begin{aligned} treeof(\mathsf{Top})(\bullet) &= \mathsf{Top} \\ treeof(\mathsf{T}_1 \to \mathsf{T}_2)(\bullet) &= \to \\ treeof(\mathsf{T}_1 \to \mathsf{T}_2)(i,\pi) &= treeof(\mathsf{T}_i)(\pi) \\ treeof(\mathsf{T}_1 \times \mathsf{T}_2)(\bullet) &= \times \\ treeof(\mathsf{T}_1 \times \mathsf{T}_2)(i,\pi) &= treeof(\mathsf{T}_i)(\pi) \\ treeof(\mathsf{T}_1 \times \mathsf{T}_2)(i,\pi) &= treeof(\mathsf{T}_i)(\pi) \end{aligned}$



Subtyping Correspondence: µ-Types and Tree Types

Definition: Two μ -types S and T are said to be in the subtype relation if $(S,T) \in \nu S_m$, where the monotone function $S_m \in P(\mathcal{T}_m \times \mathcal{T}_m) \rightarrow P(\mathcal{T}_m \times \mathcal{T}_m)$ is defined by:

$$S_{m}(R) = \{(S, Top) \mid S \in \mathcal{T}_{m}\} \\ \cup \{(S_{1} \times S_{2}, T_{1} \times T_{2}) \mid (S_{1}, T_{1}), (S_{2}, T_{2}) \in R\} \\ \cup \{(S_{1} \rightarrow S_{2}, T_{1} \rightarrow T_{2}) \mid (T_{1}, S_{1}), (S_{2}, T_{2}) \in R\} \\ \cup \{(S, \mu X.T) \mid (S, [X \mapsto \mu X.T]T) \in R\} \\ \cup \{(\mu X.S, T) \mid ([X \mapsto \mu X.S]S, T) \in R, T \neq Top, and T \neq \mu Y.T_{1}\}.$$

Theorem: Let $(S,T) \in \mathcal{T}_{m} \times \mathcal{T}_{m}$. Then $(S,T) \in \nu S_{m}$ iff (treeof S, treesof T) $\in \nu S$.

大学共同利用地変活人 情報 システム研究機構

Exercise: What is the support for S_m ?

$$support_{S_m}(\mathsf{S},\mathsf{T}) = \begin{cases} \varnothing & \text{if } \mathsf{T} = \mathsf{Top} \\ \{(\mathsf{S}_1,\mathsf{T}_1),\,(\mathsf{S}_2,\mathsf{T}_2)\} & \text{if } \mathsf{S} = \mathsf{S}_1 \times \mathsf{S}_2 \text{ and} \\ \mathsf{T} = \mathsf{T}_1 \times \mathsf{T}_2 \\ \{(\mathsf{T}_1,\mathsf{S}_1),\,(\mathsf{S}_2,\mathsf{T}_2)\} & \text{if } \mathsf{S} = \mathsf{S}_1 \rightarrow \mathsf{S}_2 \text{ and} \\ \mathsf{T} = \mathsf{T}_1 \rightarrow \mathsf{T}_2 \\ \{(\mathsf{S},[\mathsf{X} \mapsto \mu\mathsf{X},\mathsf{T}_1]\mathsf{T}_1)\} & \text{if } \mathsf{T} = \mu\mathsf{X}.\mathsf{T}_1 \\ \{([\mathsf{X} \mapsto \mu\mathsf{X},\mathsf{S}_1]\mathsf{S}_1,\mathsf{T})\} & \text{if } \mathsf{S} = \mu\mathsf{X}.\mathsf{S}_1 \text{ and} \\ \mathsf{T} \neq \mu\mathsf{X}.\mathsf{T}_1,\mathsf{T} \neq \mathsf{Top} \\ \dagger & \text{otherwise.} \end{cases}$$

Instantiating gfp⁺ for subtyping relation on μ -Types.

```
subtype(A, S, T) = if(S, T) \in A, then
                                 A
                              else let A_0 = A \cup \{(S,T)\} in
                                 if T = Top, then
                                    A_0
                                 else if S = S_1 \times S_2 and T = T_1 \times T_2, then
                                    let A_1 = subtype(A_0, S_1, T_1) in
                                    subtype(A_1, S_2, T_2)
                                 else if S = S_1 \rightarrow S_2 and T = T_1 \rightarrow T_2, then
                                    let A_1 = subtype(A_0, \mathsf{T}_1, \mathsf{S}_1) in
                                    subtype(A_1, S_2, T_2)
                                 else if T = \mu X \cdot T_1, then
                                    subtype(A_0, S, [X \mapsto \muX.T<sub>1</sub>]T<sub>1</sub>)
                                 else if S = \mu X \cdot S_1, then
                                    subtype(A_0, [X \mapsto \mu X, S_1]S_1, T)
                                 else
                                    fail
```


Terminate?

Summary

- We study the theoretical foundation of type checkers (subtyping) for equi-recursive types.
 - Induction/coinduction & proof principles
 - Finite and Infinite Types/Subtyping
 - Membership checking algorithm

Homework

21.5.2 EXERCISE [$\star\star$]: Verify that S_f and S, the generating functions for the subtyping relations from Definitions 21.3.1 and 21.3.2, are invertible, and give their support functions.

