Chapter 9: Simply Typed Lambda-Calculus

Function Types
The Typing Relation
Properties of Typing
The Curry-Howard Correspondence
Erasure and Typability
Function Types

- **T1 → T2**
 - classifying functions that expect arguments of type T1 and return results of type T2.

 (The type constructor → is right-associative. T1 → T2 → T3 stands for T1 → (T2 → T3))

- **We will consider Booleans with lambda calculus**

 - T ::= Bool

 T → T

- **Examples**

 - Bool → Bool

 - (Bool → Bool) → (Bool → Bool)
Assume all variables in Γ are different
Renaming if some are not
Type Derivation Tree

\[
\begin{align*}
\Gamma & : x : \text{Bool} \\
\Gamma & \vdash x : \text{Bool} & \text{T-VAR} \\
\Gamma & : x : \text{Bool} \\
\Gamma & \vdash \lambda x : \text{Bool}. x : \text{Bool} \rightarrow \text{Bool} & \text{T-ABS} \\
\Gamma & \vdash \text{true} : \text{Bool} & \text{T-TRUE} \\
\Gamma & \vdash (\lambda x : \text{Bool}. x) \text{true} : \text{Bool} & \text{T-APP}
\end{align*}
\]
Properties of Typing

Inversion Lemma
Uniqueness of Types
Canonical Forms
Safety: Progress + Preservation
Inversion Lemma

Lemma [Inversion of the Typing Relation]:

1. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
2. If $\Gamma \vdash \lambda x : T_1 . t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$.
3. If $\Gamma \vdash t_1 t_2 : R$, then there is some type T_{11} such that $\Gamma \vdash t_1 : T_{11} \rightarrow R$ and $\Gamma \vdash t_2 : T_{11}$.
4. If $\Gamma \vdash \text{true} : R$, then $R = \text{Boolean}$.
5. If $\Gamma \vdash \text{false} : R$, then $R = \text{Boolean}$.
6. If $\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R$, then $\Gamma \vdash t_1 : \text{Boolean}$ and $\Gamma \vdash t_2, t_3 : R$.

Exercise: Is there any context Γ and type T such that $\Gamma \vdash x : T$?
Uniqueness of Types

- **Theorem** [Uniqueness of Types]: In a given typing context Γ, a term t (with free variables all in the domain of Γ) has **at most one type**. Moreover, there is just **one derivation** of this typing built from the inference rules that generate the typing relation.
Canonical Form

- **Lemma [Canonical Forms]:**
 - If \(v \) is a value of type \(\text{Bool} \), then \(v \) is either true or false.
 - If \(v \) is a value of type \(T_1 \rightarrow T_2 \), then \(v = \lambda x:T_1 . t_2 \).
Progress

• **Theorem** [Progress]: Suppose \(t \) is a closed, well-typed term. Then either \(t \) is a value or else there is some \(t' \) with \(t \rightarrow t' \).

Proof: By induction on typing derivations.

Closed: No free variable
Well-typed: \(\vdash t : T \) for some \(T \)
Two Structural Lemmas

• **Lemma [Permutation]**: If $\Gamma \vdash t : T$ and Δ is a permutation of Γ, then $\Delta \vdash t : T$.

• **Lemma [Weakening]**: If $\Gamma \vdash t : T$ and x is not in $\text{dom}(\Gamma)$, then $\Gamma, x:S \vdash t : T$.

Note: All can be easily proved by induction on derivation
Preservation

- **Lemma** [Preservation of types under substitution]: If \(\Gamma, x:S \vdash t:T \) and \(\Gamma \vdash s:S \),
 then \(\Gamma \vdash [x \mapsto s]t:T \).

 Proof: By induction on derivation of \(\Gamma, x:S \vdash t : T \).

- **Theorem** [Preservation]:
 If \(\Gamma \vdash t:T \) and \(t \rightarrow t' \), then \(\Gamma \vdash t' : T \).
The Curry-Howard Correspondence

- A connection between logic and type theory

<table>
<thead>
<tr>
<th>LOGIC</th>
<th>PROGRAMMING LANGUAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>propositions</td>
<td>types</td>
</tr>
<tr>
<td>proposition $P \supset Q$</td>
<td>type $P \rightarrow Q$</td>
</tr>
<tr>
<td>proposition $P \land Q$</td>
<td>type $P \times Q$ (see §11.6)</td>
</tr>
<tr>
<td>proof of proposition P</td>
<td>term t of type P</td>
</tr>
<tr>
<td>proposition P is provable</td>
<td>type P is inhabited (by some term)</td>
</tr>
</tbody>
</table>
Erasure and Typability

• Types are used during type checking, but do not appear in the compiled form of the program.

DEFINITION: The *erasure* of a simply typed term t is defined as follows:

\[
\begin{align*}
erase(x) & = x \\
erase(\lambda x : T_1 . t_2) & = \lambda x . \erase(t_2) \\
erase(t_1 t_2) & = \erase(t_1) \erase(t_2)
\end{align*}
\]

THEOREM:

1. If $t \rightarrow t'$ under the typed evaluation relation, then $\erase(t) \rightarrow \erase(t')$.

2. If $\erase(t) \rightarrow m'$ under the typed evaluation relation, then there is a simply typed term t' such that $t \rightarrow t'$ and $\erase(t') = m'$.
Curry-Style vs. Church-Style

- **Curry Style**
 - Syntax \rightarrow Semantics \rightarrow Typing
 - Semantics is defined on untyped terms
 - Often used for implicit typed languages

- **Church Style**
 - Syntax \rightarrow Typing \rightarrow Semantics
 - Semantics is defined only on well-typed terms
 - Often used for explicit typed languages
Homework

• Read Chapter 9.
• Do Exercise 9.3.9.

9.3.9 Theorem [Preservation]: If $\Gamma \vdash t : T$ and $t \leadsto t'$, then $\Gamma \vdash t' : T$. □

Proof: Exercise [Recommended, ★★★]. The structure is very similar to the proof of the type preservation theorem for arithmetic expressions (8.3.3), except for the use of the substitution lemma. □