
Chapter	13:			Reference	

Why	reference	
Typing

Evaluation
Store	Typings

Safety
Notes

References

Computational	Effects
Also known as side effects.
A function or expression is said to have a side effect if, in
addition to returning a value, it also modifies some state
or has an observable interaction with calling functions or
the outside world.
– modify a global variable or static variable, modify one of its

arguments,
– raise an exception,
– write data to a display or file, read data, or
– call other side-effecting functions.

In the presence of side effects, a program's behavior may
depend on history; that is, the order of evaluation matters.

Computational	Effects
Side effects are the most common way that a program
interacts with the outside world (people, file systems,
other computers on networks).
The degree to which side effects are used depends on the
programming paradigm.
– Imperative programming is known for its frequent utilization

of side effects.
– In functional programming, side effects are rarely used.

Functional languages such as Standard ML, Scheme and Scala
do not restrict side effects, but it is customary for
programmers to avoid them. The functional language Haskell
expresses side effects such as I/O and other stateful
computationsusingmonadic actions.

Mutability
So far, what we have discussed does not yet include
computational effects (i.e., side effects) .
In particular, whenever we defined function, we never
changed variables or data. Rather, we always computed
new data.
– For instance, the operations to insert an item into the data

structure didn't effect the old copy of the data
structure. Instead, we always built a new data structure with
the item appropriately inserted.

– For the most part, programming in a functional style (i.e.,
without side effects) is a "good thing" because it's easier to
reason locally about the behavior of the program.

Mutability
In most programming languages, variables are
mutable — i.e., a variable provides both
– a name that refers to a previously calculated value, and
– the possibility of overwriting this value with another (which

will be referred to by the same name)
In some languages (e.g., OCaml), these features are
separate:
– variables are only for naming — the binding between a

variable and its value is immutable
– introduce a new class of mutable values (called reference

cells or references)
– at any given moment, a reference holds a value (and can be

dereferenced to obtain this value)
– a new valuemay be assigned to a reference

Mutability
Writing values into memory locations is the fundamental
mechanism of imperative languages such as C/C++.

– Mutable structures are required to implement many
efficient algorithms.

– They are also very convenient to represent the
current state of a state machine.

Basic	Examples
#let	r	=	ref	5
val r	:	int ref	=	{contents		=	5}

#	r:=	!r	+2
#	!r
-:	int =	7

(r:=succ(!r);	!r)
(r:=succ(!r);	r:=succ(!r);	r:=succ(!r);		r:=succ(!r);	!r)

i.e.,	
((((r:=succ(!r);	 r:=succ(!r));	r:=succ(!r));		:=succ(!r));	 !r)

Basic	Examples
#	let	flag	=	ref true;;
-val flag:	bool ref	=	{contents	=	true}

#	if	!flag	then	1	else	2;;
-:	int =	1

Reference
Basic	operations
– allocation ref	(operator)	
– dereferencing !	
– assignment :=

Is	there	any	difference	between	the	expressions	of	?
5	+	8;	
r:	=7;
(r:=succ(!r);	!r)

Aliasing
A value of type ref T is a pointer to a cell holding a value
of type T.

5

r	=	

If this value is “copied” by assigning it to another variable,
the cell pointed to is not copied. (r and s are aliases)

5

r	=	 s	=	

So we can change r by assigning to s:
(s:=10; !r)

Aliasing	all	around	us
Reference cells are not the only language feature that
introduces the possibility of aliasing.
– arrays
– communication channels
– I/O devices (disks, etc.)

The	difficulties	of	aliasing
The possibility of aliasing invalidates all sorts of useful forms
of reasoning about programs, both by programmers...
e.g., function

𝜆𝑟: 𝑅𝑒𝑓	𝑁𝑎𝑡. 𝜆𝑠:𝑅𝑒𝑓	𝑁𝑎𝑡. (𝑟 ≔ 2; 	𝑠 ≔ 3; 	 ! 𝑟)
always returns2 unless 𝑟 and s arealiases.

... and by compilers:
Code motion out of loops, common sub-expression elimination,
allocation of variables to registers, and detection of uninitialized
variables all depend upon the compiler knowing which objects a
load or a store operation could reference.

High-performance compilers spend significant energy on
alias analysis to try to establish when different variables
cannot possibly refer to the same storage.

The	benefits	of	aliasing
The problems of aliasing have led some language
designers simply to disallow it (e.g., Haskell).
However, there are good reasons why most languages do
provide constructs involving aliasing:
– efficiency (e.g., arrays)
– “action at a distance” (e.g., symbol tables)
– shared resources (e.g., locks) in concurrent systems
– ...…

Example
𝑐 = 𝑟𝑒𝑓	0
incc = 𝜆𝑥:𝑈𝑛𝑖𝑡. (𝑐 ≔ 𝑠𝑢𝑐𝑐 ! 𝑐 ; ! 𝑐)
decc = 𝜆𝑥:𝑈𝑛𝑖𝑡. (𝑐 ≔ 𝑝𝑟𝑒𝑑 ! 𝑐 ; ! 𝑐)
incc	𝑢𝑛𝑖𝑡
𝑑𝑒𝑐𝑐	𝑢𝑛𝑖𝑡
o = {i = 𝑖𝑛𝑐𝑐, 𝑑 = 𝑑𝑒𝑐𝑐}

𝑙𝑒𝑡	𝑛𝑒𝑤𝑐𝑜𝑢𝑛𝑡𝑒𝑟 =	o
			𝜆.JKLM.				

let	𝑐	 = 	𝑟𝑒𝑓	0	in	
let	incc = 𝜆𝑥:𝑈𝑛𝑖𝑡. (𝑐 ≔ 𝑠𝑢𝑐𝑐 ! 𝑐 ; ! 𝑐) in	
let	decc = 𝜆𝑥:𝑈𝑛𝑖𝑡. 𝑐 ≔ 𝑝𝑟𝑒𝑑 ! 𝑐 ; ! 𝑐

let	o = {𝑖 = 𝑖𝑛𝑐𝑐, 𝑑 = 𝑑𝑒𝑐𝑐} in	
o

How	to	enrich	the	language	with	the	
new	mechanism？

Syntax	

...	 plus	other	familiar	 types,	in	examples.

Typing	rules

Example

Evaluation
What is the value of the expression ref 0 ?
Crucial	observation:	 	evaluating	ref	0 must	do something	?
Is

r	=	ref	0
s	=	ref	0	

and	
r	=	ref	0
s	=	r

behave	the	same?

Specifically, evaluating ref 0 should allocate some storage
and yield a reference (or pointer) to that storage.

So what is a reference?

The	store	
A reference names a location in the store (also known as
the heap or just thememory).

What is the store?
– Concretely: an array of 8-bit bytes, indexed by 32/64-

bit integers.
– More abstractly: an array of values.
– Even more abstractly: a partial function from

locations to values.

Locations
Syntax	of	values:

...	 and	since	all	values	are	terms	...

Syntax	of	Terms

Aside
Does this mean we are going to allow programmers to
write explicit locations in their programs??

No: This is just a modeling trick.

We are enriching the “source language” to include
some runtime structures, so that we can continue to
formalize evaluation as a relation between source
terms.

Aside: If we formalize evaluation in the big-step style,
then we can add locations to the set of values (results of
evaluation) without adding them to the set of terms.

Evaluation
The result of evaluating a term now (with references)
– depends on the store in which it is evaluated.
– is not just a value — we must also keep track of the
changes that get made to the store.

i.e.,	 the	evaluation	relation	should	now	map	a	term	as	
well	as	a	store to	a	reduced	term	and a	new	store.

To use the metavariable 𝜇 to range over stores.

	t	|	𝜇		 → 		 tS	|	𝜇′

Evaluation
An	assignment				𝑡U	 ≔ 	 𝑡V first	evaluates	𝑡U	 and	 𝑡V	until	
they	become	values ...

...	 and	then	returns	unit	and	updates	the	store:

Evaluation
A term of the form ref		tU	 first evaluates inside tU	 until it
becomes a value ...

... and then chooses (allocates) a fresh location 𝑙 ,
augments the store with a binding from 𝑙 to vU	, and
returns 𝑙 :

Evaluation
A	term	!t1 first	evaluates	in	t1 until	it	becomes	a	value...

...	and	then	looks	up	this	value	(which	must	be	a	location,	
if	the	original	term	was	well	typed)	and	returns	its	
contents	in	the	current	store

Evaluation
Evaluation rules for function abstraction and application
are augmented with stores, but don’t do anything with
them directly.

Aside
Garbage Collection
Note that we are not modeling garbage collection —
the store just grows without bound.
It may not be problematic for most theoretical
purposes, whereas it is clear that for practical purposes
some form of deallocation of unused storage must be
provided.

Pointer Arithmetic
p++;
We can’t do any!

Store	Typing

Typing	Locations
Question: What	is	the	type of	a	location?

Answer:					Depends	on	the	contents	of	the	store!

For	example,	
in	the	store		(𝑙U ⟼unit,	𝑙V ⟼unit) ,	the	term	! 𝑙V	 is	
evaluated	to	unit,		having	type	Unit.

But	in	the	store	(𝑙U ⟼unit,	𝑙V ⟼ λx:Unit. x), the	term	
! 𝑙V	 has	type	Unit → Unit .

Typing	Locations	— first	try
Roughly, to find the type of a location 𝑙, first look up the
current contents of 𝑙 in the store, and calculate the type
𝑇U of the contents:

More precisely, to make the type of a term depend on the
store (keeping a consistent state), we should change the
typing relation from three-place to :

i.e., typing is now a four-place relation (about contexts,
stores, terms, and types), though the store is a part of the
context……

Problems		#1
However, this rule is not completely satisfactory, and is
rather inefficient.
– First of all, it can make typing derivations very large

(if a location appears many times in a term) !
– e.g., if

then	how	big	is	the	typing	derivation	for	! 𝑙_?

𝜇 = 	 𝑙U	 ↦ λx: Nat. 	999,
𝑙V	 ↦ λx:Nat. 	(! 𝑙U)		x,
𝑙d	 ↦ λx:Nat. 	(! 𝑙V)		x,
𝑙e	 ↦ λx:Nat. 	(! 𝑙d)		x,
𝑙_	 ↦ λx:Nat. 	(! 𝑙e)		x)	,

Problems	#2
But wait... it gets worse if the store contains a cycle.
Suppose

how big is the typing derivation for ! 𝑙V?
Calculating a type for 𝑙V requires finding the type of 𝑙U,
which in turn involves 𝑙V.

𝜇 = 	 𝑙U	 ↦ λx: Nat. 	(! 𝑙V)		x,
𝑙V	 	↦ λx:Nat. (! 𝑙U)		x)	,

Why?	
What leads to the problems?

Our typing rule for locations requires us to recalculate the
type of a location every time it’s mentioned in a term,
which should not be necessary.

In fact, once a location is first created, the type of the
initial value is known, and the type will be kept even if the
values can be changed.

Store	Typing
Observation:

The typing rules we have chosen for references
guarantee that a given location in the store is always
used to hold values of the same type.

These intended types can be collected into a store typing:

— a partial function from locations to types.

Store	Typing
E.g.,	for

A	reasonable	store	typing	 would	be

𝜇 = 	 𝑙U	 ↦ λx:Nat. 	999,
𝑙V	 ↦ λx:Nat. 	(! 𝑙U)		x,
𝑙d	 ↦ λx:Nat. 	(! 𝑙V)		x,
𝑙e	 ↦ λx:Nat. 	(! 𝑙d)		x,
𝑙_	 ↦ λx:Nat. 	(! 𝑙e)		x)	,

Store	Typing
Now, suppose we are given a store typing Σ		describing
the store 𝜇 in which we intend to evaluate some term t.
Then we can use Σ to look up the types of locations in t
instead of calculating them from the values in 𝜇.

i.e., typing is now a four-place relation on contexts, store
typings, terms, and types.
Proviso: the typing rules accurately predict the results
of evaluation only if the concrete store used during
evaluation actually conforms to the store typing.

Final	typing	rules

Store	Typing
Question: Where do these store typings come from?

Answer: When we first typecheck a program, there will be
no explicit locations, so we can use an empty store typing,
since the locations arise only in terms that are the
intermediate results of evaluation.

So, when a new location is created during evaluation,

we can observe the type of vU and extend the “current
store typing” appropriately.

Store	Typing
As evaluation proceeds and new locations are created, the
store typing is extended by looking at the type of the
initial values being placed in newly allocated cells.

åonly records the association between already-allocated
storage cells and their types.

Safety
Coherence	between

the	statics	and	the	dynamics
Well-formed	programs	are	well-behaved	

Preservation

Preservation
How to express the statement of preservation?
First	attempt:	 just	add	stores and	store	typings in	the	
appropriate	places.

Theorem(?):		 if Γ	|	Σ	 ⊢ t: T	 and	t 𝜇	 ⟶ tS 𝜇S	,	then	
Γ	|	Σ	 ⊢ t′: T	
Right??		
Wrong!

Why	wrong?	

Because Σ and 𝜇 here are not constrained to have anything to
do with each other!
Exercise:	Construct	an	example	that	breaks	this	statement	
of preservation

Preservation
Definition:		A	store	𝜇 is	said	to	be	well	typed	with	respect	
to	a	typing	context	Γ	and	a	store	typing	Σ,		written Γ	|	Σ ⊢
𝜇, if	𝑑𝑜𝑚 𝜇 = 𝑑𝑜𝑚 Σ 	and	Γ	|	Σ ⊢ 𝜇 𝑙 : 		Σ 𝑙 for	every	
l ∈ 𝑑𝑜𝑚 𝜇 .

Theorem (?)	:		if	
Γ	|	Σ ⊢ t: T
t	 	𝜇 ⟶ tS 	𝜇′	
Γ	|	Σ ⊢ 𝜇

then		Γ	|	Σ ⊢ t′: T

Right	this	time?	
Still	wrong	!
Why?		Where?

Preservation
Creation	of	a	new	reference	cell	...

m	∉	opq r
stu	vw 	r	⟶	m	 (r,	m	↦vw)

(E-REFV)

... breaks the correspondence between the store typing
and the store.
Since the store can grow during evaluation:
Creation of a new reference cell yields a store with a
larger domain than the initial one, making the conclusion
incorrect: if 𝜇′	includes a binding for a fresh location 𝑙	,
then 𝑙 cann’t be in the domain of Σ	, and it will not be the
case that t′	 is typable under Σ.

Preservation
Theorem:		if	

Γ	|	Σ ⊢ t: T
Γ	|	Σ ⊢ 𝜇
t	|	𝜇	 ⟶ tS|	µ′

then,		for	some ΣS ⊇ 	Σ,
Γ	|	Σ′ ⊢ t′: T
Γ	|	Σ′ ⊢ 𝜇′.

A	correct	version.		
What	is	ΣS ?

Proof:	 Easy	extension	of	the	preservation	proof	for	𝜆→.	

Progress

Progress
Theorem:	
Suppose t is a closed, well-typed term
(i.e., Γ|	Σ ⊢ t: T	 for some T and Σ).
Then either	t is a value or else, for any store 𝜇 such that
Γ|	Σ ⊢ 𝜇, there is some term t′	and store 𝜇′ with

t	|	𝜇	 ⟶ t′	|	𝜇′.

In	summary		…

Syntax
We	added	to		λ→ (with	Unit)	syntactic	forms	for	creating,	
dereferencing,	and	assigning reference	cells,	plus	a	new	
type	constructor	Ref.

Evaluation
Evaluation	becomes	a	four-place relation:	t	|	µ	 ⟶ 	t′	|	µ′

Typing
Typing	becomes	a	three-place relation:		Γ	|	Σ ⊢ 	t ∶ 	T

Preservation
Theorem:		if	

Γ	|	Σ ⊢ t: T
Γ	|	Σ ⊢ 𝜇
t	|	𝜇	 ⟶ tS|	µ′

then,	for	some ΣS ⊇ Σ,
Γ	|	Σ′ ⊢ t′: T
Γ	|	Σ′ ⊢ 𝜇′.

Progress
Theorem:	Suppose	t is	a	closed,	well-typed	term	(that	is,
∅	|	Σ ⊢ t: T	 for	some	T and	Σ).		Then	either t	 is	a	value	or	
else,	for	any	store	𝜇 such	that	∅	|	Σ ⊢ 𝜇,	there	is	some	
term	t′	and	store	𝜇′ with	t	|	𝜇	 ⟶ t′	|	𝜇′.

Others	…

Arrays	
Fix-sized vectors of values. All of the values must have the
same type, and the fields in the array can be accessed and
modified.

e.g.,	in	Ocaml,	arrays	can	be	created	with	
[|e1;	…	;	en|]	

#	let	a	=	[|1;3;5;7;9|];;
val a	:	int array	=	[|1;3;5;7;9|]
#a;;
-:	int array	=	[|1;3;5;7;9|]

Recursion	via	references
Indeed,	we	can	define	arbitrary	recursive	functions	using	references.
1. Allocate	a	ref cell	and	initialize	it	with	a	dummy	function	of	the	

appropriate	type:
fact��� 	= 	ref	(λn:Nat. 0)

2. Define	the	body	of	the	function	we	are	interested	in,	using	the	
contents	of	the	reference	cell	for	making	recursive	calls:		
fact�po� =
λn:Nat.
if	iszero	n	then	1	else	times	n	((! fact���)(pred	n))

3. “Backpatch”	by	storing	the	real	body	into	the	reference	cell:
fact���:= fact�po�

4. Extract	the	contents	of	the	reference	cell	and	use	it	as	desired:	
fact	 = 	 ! fact���
fact	5

HomeworkJ
• Read	chapter	13
• Read	and	chew	over	the	codes	of	 fullref.	

• HW:	13.3.1	and			13.5.2

• Preview	chapter	14

Non-termination	via	references
There	are	well-typed	terms	in	this	system	that	are	not	
strongly	normalizing.	 For	example:

t1 = λr: Ref	 Unit → Unit .	
(r	 ≔ λx:Unit. ! r x ;
! r 	unit);

t2 = ref	 λx:Unit. x ;

Applying	t1 to	t2 yields	a	(well-typed)	divergent	term.

Nontermination via	references
There	are	well-typed	terms	in	this	system	that	are	not	
strongly	normalizing.	For	example:

t1 = λr: Ref	 Unit → Unit .	
(r	 ≔ λx:Unit. ! r x ;
! r 	unit);

t2 = ref	 λx:Unit. x ;

Applying	t1 to	t2 yields	a	(well-typed)	divergent	term.

