
Part	III
Chapter	15:			Subtyping	

Subsumption
Subtype	relation

Properties	of	subtyping	and	typing
Subtyping	and	other	features	
Intersection	and	union	types	

Subtyping

Motivation
With the usual typing rule for applications

Is the term

right?

It is not well typed.

Motivation
With	the	usual	typing	rule	for	applications

the	term

is	not well	typed.		

This	is	silly:	 what		we’re	doing	is	passing	the	function	a	
better	argument		than	it	needs.

Subsumption
More	generally:	
some	types	are	better	than	others,	in	the	sense	that	a	
value	of	one	can	always	safely	be	used	where	a	value	of	
the	other	is	expected.
We	can	formalize	this	intuition	by	introducing:	

Subsumption
More	generally:	 some	types	are	better	than	others,	in	the	
sense	that	a	value	of	one	can	always	safely	be	used	where	
a	value	of	the	other	is	expected.
We	can	formalize	this	intuition	by	introducing:	

1. a	subtyping relation between	types,	written	S	<:	T

Subsumption
More	generally:	some	types	are	better	than	others,	in	the	
sense	that	a	value	of	one	can	always	safely	be	used	where	
a	value	of	the	other	is	expected.
We	can	formalize	this	intuition	by	introducing:	

1. a	subtyping	relation	between	types,	written	S	<:	T
2. a	rule	of	subsumption stating	that,	if	S	<:	T,	then	any	

value	of	type	S can	also	be	regarded	as	having	type	T,	
i.e.,	

Subsumption

Principle	of	safe	substitution

More	generally:	some	types	are	better	than	others,	in	the	
sense	that	a	value	of	one	can	always	safely	be	used	where	
a	value	of	the	other	is	expected.
We	can	formalize	this	intuition	by	introducing:	

1. a	subtyping	relation	between	types,	written	S	<:	T
2. a	rule	of	subsumption stating	that,	if	S	<:	T,	then	any	

value	of	type	S can	also	be	regarded	as	having	type	T,	
i.e.,	

Subtyping
Intuitions:					S<:T means ...

“An	element	of	Smay	safely	be	used	wherever	an	
element	of	T is	expected.”					(Official)

Subtyping
Intuitions:					S<:T means ...

“An	element	of	Smay	safely	be	used	wherever	an	
element	of	T is	expected.”					(Official)
– S is	“better	than”	T.
– S is	a	subset	of	T.
– S is	more	informative	/	richer	than	T.

Example
Back	to	the	example,	we	will	define	subtyping	between	
record	types	so	that,	for	example

{𝑥: 𝑁𝑎𝑡, 𝑦: 𝑁𝑎𝑡} 	<:	{𝑥: 𝑁𝑎𝑡}
by	subsumption,

⊢ 	 {𝑥 = 0, 𝑦 = 1} ∶ 	 {𝑥: 𝑁𝑎𝑡}

Example
We	will	define	subtyping	between	record	types	so	that,	
for	example

{𝑥: 𝑁𝑎𝑡, 𝑦: 𝑁𝑎𝑡} 	<:	{𝑥: 𝑁𝑎𝑡}

by	subsumption,

⊢ 	 {𝑥 = 0, 𝑦 = 1} ∶ 	 {𝑥: 𝑁𝑎𝑡}
and	hence

is	well typed.

The	Subtype	Relation:	Records
“Width	subtyping”			(forgetting	fields	on	the	right):

(S-RcdWidth)

Intuition:	
{𝑥: 𝑁𝑎𝑡}	is	the	type	of	all	records	with	at	least a	numeric	
𝑥 field.

𝑙<: 𝑇<<∈?..ABC <:	 𝑙<:𝑇<<∈?..A

The	Subtype	Relation:	Records
“Width	subtyping”			(forgetting	fields	on	the	right):

(S-RcdWidth)

Intuition:
{𝑥: 𝑁𝑎𝑡}	is the type of all records with at least a numeric
𝑥 field.

Note that the record type with more fields is a subtype of
the record type with fewer fields.

Reason: the type with more fields places stronger
constraints on values, so it describes fewer values.

𝑙<: 𝑇<<∈?..ABC <:	 𝑙<:𝑇<<∈?..A

The	Subtype	Relation:	Records
“Depth subtyping” within fields:

The types of individual fields may change, as long as the
type of each corresponding field in the two records are in
the subtype relation.

Examples

Examples
We can also use S-RcdDepth to refine the type of just a
single record field (instead of refining every field), by
using S-REFL to obtain trivial subtyping derivations for
other fields.

𝑎: 𝑁𝑎𝑡, 𝑏: 𝑁𝑎𝑡 <: 𝑎: 𝑁𝑎𝑡 	S−RCDWIDTH			 𝑚: 𝑁𝑎𝑡 <: 𝑚:𝑁𝑎𝑡 	S−REFL	

𝑥: 𝑎: 𝑁𝑎𝑡,𝑏:𝑁𝑎𝑡 , 𝑦: 𝑚: 𝑁𝑎𝑡 <: {𝑥: 𝑎: 𝑁𝑎𝑡 , 𝑦: 𝑚: 𝑁𝑎𝑡 }
		S − RcdDepth

Order	of	fields	in	Records
The order of fields in a record does not make any
difference to how we can safely use it, since the only thing
that we can do with records (projecting their fields) is
insensitive to the order of fields.

S-RcdPerm tells	us	that	
{c:Top,	b:	Bool,	a:	Nat}		<:	{a:	Nat,	b:	Bool,	c:Top}	

and
{a:	Nat,	b:	Bool,	c:Top}		<:	{c:Top,	b:	Bool,	a:	Nat}	

The	Subtype	Relation:	Records
Permutation	of	fields:

By using S-RcdPerm together with S-RcdWidth and
S-Trans allows us to drop arbitrary fields within records.

Variations
Real languages often choose not to adopt all of these
record subtyping rules. For example, in Java,
– A subclass may not change the argument or result types of a

method of its superclass (i.e., no depth subtyping)
– Each class has just one superclass (“single inheritance” of

classes)
each class member (field or method) can be assigned a single
index, adding new indices “on the right” as more members are
added in subclasses (i.e., no permutation for classes)

– A class may implement multiple interfaces (“multiple
inheritance” of interfaces)
i.e., permutation is allowed for interfaces.

The	Subtype	Relation:	Arrow	types

A high-order language, functions can be passed as
arguments to other functions

The	Subtype	Relation:	Arrow	types

Note the order of 𝑇? and 𝑆? in the first premise.
The subtype relation is contravariant in the left-hand
sides of arrows and covariant in the right-hand sides.

The	Subtype	Relation:	Arrow	types

Note the order of 𝑇? and 𝑆? in the first premise.
The subtype relation is contravariant in the left-hand sides of
arrows and covariant in the right-hand sides.

Intuition: if we have a function f of type S? ⟶ SV, then we know
1. f accepts elements of type S?; clearly, fwill also accept elements

of any subtype T? of S?.
2. the type of f also tells us that it returns elements of type SV; we

can also view these results belonging to any supertype TV of SV.
i.e., any function f	of type S? ⟶ SV can also be viewed as having
type T? ⟶ TV.

The	Subtype	Relation:	Top
It is convenient to have a type that is a supertype of every
type.
We introduce a new type constant Top, plus a rule that
makes Top amaximum element of the subtype relation.

The	Subtype	Relation:	Top
IIt is convenient to have a type that is a supertype of every
type.
We introduce a new type constant Top, plus a rule that
makes Top amaximum element of the subtype relation.

Cf.	 Object in	Java.

Subtype	Relation:	General	rules

Subtype	Relation:	General	rules

A	subtyping	is	a	binary	relation	between	types	that		is	
closed	under	the	rules:	

Subtype	Relation

Properties	
of	

Subtyping

Safety
Statements of	progress and	preservation theorems	are	
unchanged	from	λ→.

Safety
Statements of progress and preservation theorems are
unchanged from λ→.
However, Proofs become a bit more involved, because the
typing relation is no longer syntax directed.

Given a derivation, we don’t always know what rule was used
in the last step.

e.g., the rule T-SUB could appear anywhere.

Syntax-directed	rules
When we say a set of rules is syntax-directed we mean
two things:
1. There is exactly one rule in the set that applies to each

syntactic form. (We can tell by the syntax of a term which rule
to use.)
– In order to derive a type for t1 t2, we must use T-App.

2. We don't have to “guess" an input (or output) for any rule.
– To derive a type for t1 t2, we need to derive a type for t1

and a type for t2.

Preservation
Theorem:	 If Γ ⊢ t: 	T		𝑎𝑛𝑑		t	 ⟶ 	t’, 	𝑡ℎ𝑒𝑛	Γ ⊢ t′ ∶ 	T.

Proof:	 By	induction	on	typing	derivations.

Which	cases	are	likely	to	be	hard?

Subsumption case
Case T-Sub:			t ∶ 	S								S	 <: 	T

By	the	induction	hypothesis,	Γ ⊢ t′ ∶ S.		By	T-Sub ,	Γ ⊢
t′: T.

Not	hard!

Application	case
Case T-App :
						t	 = 	 t?		tV					Γ ⊢ t?: T?? ⟶ T?V			Γ ⊢ tV: T??			T	 = T?V
By the inversion lemma for evaluation, there are

three rules
by which t ⟶ t′ can be derived:
E-App1, E-App2, and E-AppAbs .

Proceed by cases.

Application	case
Case T-App :

		t	 = 	 t?		tV			Γ ⊢ t?: T?? ⟶ T?V					Γ ⊢ tV: T??			T	 = T?V
By the inversion lemma for evaluation, there are three
rules by which t ⟶ t′ can be derived:
E-App1, E-App2, and E-AppAbs.

Proceed by cases.

Subcase E-App1	: 	t?⟶ th?										t′	 = 	 t′?		tV
The result followsfrom the inductionhypothesisand T-App.

Application	case
Case T-App :
		t	 = 	 t?		tV			Γ ⊢ t?: T?? ⟶ T?V		Γ ⊢ tV: T??			T	 = T?V

Subcase E-App2 : 	t?= v?		 	tV⟶ t′V t′ = v? t′V
Similar.

Application	case
Case T-App:

t	 = 	 t?		tV				Γ ⊢ t?: T?? ⟶ T?V			Γ ⊢ tV: T??		T = T?V
Subcase E-AppAbs :	

t? = λx: S??. t?V 				tV= vV t′ = [x ↦ vV] t?V
by	the	inversion	lemma	for	the	typing	relation ...	
									T?? <:	𝑆?? and			Γ, x: S?? ⊢ t?V: T?V .
By	using	T-Sub,			Γ ⊢ tV: S??.
by	the	substitution	 lemma,		Γ ⊢ th: T?V .

Inversion	Lemma	for	Typing
Lemma:	 if		Γ ⊢ λx:S?. sV: 	T? ⟶ TV, 	then		T? <: S?	and
Γ, x: S? ⊢ sV: TV.

Inversion	Lemma	for	Typing
Lemma:	 if		Γ ⊢ λx:S?. sV:	T? ⟶ TV, 	then	

		T? <: S?				and			Γ, x: S? ⊢ sV: TV.

Proof:	 Induction on	typing	derivations.
Case T–Sub:				 λx:S1.s2:U U:	T1⟶T2
We want to say “By the induction hypothesis...”, but the IH does
not apply (since we do not know that U is an arrow type).

Need another lemma...
Lemma:	 If		U <:	T? ⟶ TV,	 then	U has	the	form	of	U? ⟶ UV,
with	T? <:	U? and		UV <:	TV.	
(Proof:	 		by	induction	on	subtyping	derivations.)

Inversion	Lemma	for	Typing
By this lemma, we know

U = U? ⟶ UV, with T? <:	U? and UV <: TV.

The IH now applies, yielding
U? <: S? and Γ, x: S? ⊢ sV: UV.

From U? <:	S?	and T? <:	U? , rule S-Trans gives
T? <:	S?.

From Γ, x: S? ⊢ sV: UV and UV <: TV, rule T-Sub gives
Γ, x: S? ⊢ sV: TV,

and we are done.

Subtyping	
with	

Other	Features

Ascription	and	Casting
Ordinary	ascription:

Ascription	and	Casting
Ordinary	ascription:

Casting	(cf.	Java):

Subtyping	and	Variants

Subtyping	and	Lists

i.e.,	List	is	a	covariant	type	constructor.

Subtyping	and	References

i.e.,		Ref is	not	a	covariant (nor	a	contravariant)	 type	
constructor,	but	an	invariant.

Subtyping	and	References

i.e., Ref is not a covariant (nor a contravariant) type
constructor.
Why?
– When	a	reference	is	read,	the	context	expects	a	T?,	so	
if		S?<: T? then	an	S? is	ok.

Subtyping	and	References

i.e., Ref is not a covariant (nor a contravariant) type
constructor.
Why?
– When a reference is read, the context expects a T?, so
if		S?<: T? then an S? is ok.

– When a reference is written, the context provides a T?
and if the actual type of the reference is Ref	S? ,
someone else may use the T? as an S?. So we need
T? <: S?.

Subtyping	and	Arrays
Similarly...

This	is	regarded	(even	by	the	Java	designers)	as	a	mistake	
in	the	design.

References	again
Observation:		a	value	of	type	𝑅𝑒𝑓		𝑇 can	be	used	in	two	
different	ways:	
– as	a	source for	values	of	type	T	,	and	
– as	a	sink for	values	of	type	T.

References	again
Observation:		a	value	of	type	𝑅𝑒𝑓		𝑇 can	be	used	in	two	
different	ways:	
– as	a	source for	values	of	type	T	,	and	
– as	a	sink for	values	of	type	T.
Idea：Split	Ref	T into	three	parts:
– Source	T:	 reference	cell	with	“read	capability”
– Sink	T:	 reference	cell	with	“write	capability”
– Ref	T:	 cell	with	both	capabilities

Modified	Typing	Rules

Subtyping	rules

Capabilities
Other	kinds	of	capabilities	can	be	treated	similarly,	e.g.,
– send and	receive capabilities	on	communication	
channels,	

– encrypt/decrypt capabilities	of	cryptographic	keys,	
– ...

Intersection	and	Union	
Types

Intersection	Types
The	inhabitants	of		T? ∧ 	TV		are	terms	belonging	to	both
S	and	T — i.e.,	T? ∧	TV	is	an	order-theoretic		meet			
(greatest	lower	bound)	of	T? and	TV.

Intersection	Types
Intersection types permit a very flexible form of finitary
overloading.

This form of overloading is extremely powerful.
Every strongly normalizing untyped lambda-term can be typed
in the simply typed lambda-calculus with intersection types.

type reconstructionproblem is undecidable

Intersection types have not been used much in language
designs (too powerful!), but are being intensively
investigated as type systems for intermediate languages
in highly optimizing compilers (cf. Church project).

Union	types
Union types are also useful.

T? ∨ TV		is an untagged (non-disjoint) union of T? and TV.
No tags : no case construct. The only operations we can
safely perform on elements of T? ∨ TV are ones that make
sense for both T? and TV.

N. B: untagged union types in C are a source of type
safety violations precisely because they ignores this
restriction, allowing any operation on an element of T? ∨
TV that makes sense for either T? or TV.

Union types are being used recently in type systems for
XML processing languages (cf. Xduce, Xtatic).

Varieties	of	Polymorphism
• Parametric	polymorphism	(ML-style)
• Subtype	polymorphism	(OO-style)
• Ad-hoc	polymorphism	(overloading)

HW	for	Chap15 & 16
• 15.2.5
• 15.3.2

