

Definition: A relation $R \subseteq U \times U$ is transitive if R is closed under the monotone function $TR(R) = \{(x,y) \mid \exists z \in U. (x,z), (z,y) \in R\},$ i.e., if $TR(R) \subseteq R$.

Lemma: Let $F \in P(U \times U) \rightarrow P(U \times U)$ be a monotone function. If $TR(F(R)) \subseteq F(TR(R))$ for any $R \subseteq U \times U$, then vF is transitive.

Theorem: vS is transitive.

Definition: A tree type S is a subtree of a tree type T if S = $\lambda \sigma$. T(π, σ) for some π .

Definition: A tree type $T \in T$ is regular if subtrees(T) is finite.

Examples:

- Every finite tree type is regular.
- T = Top x (Top x (Top x ...)) is regular.

Homework

21.5.2 EXERCISE [**]: Verify that S_f and S, the generating functions for the subtyping relations from Definitions 21.3.1 and 21.3.2, are invertible, and give their support functions.

