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Chapter 21: Metatheory of Recursive Types

Induction and Coinduction
Finite and Infinite Types/Subtyping

Membership Checking

21.1 Induction and Coinduction
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Universal Set U

U: everything in the world

Type: a subset of U

Inductive/Coinductive
Definition

Generating Function

• Definition: A function F ∈ P(U) → P(U) is monotone
if X ⊆ Y implies F(X) ⊆ F(Y).

• Definition: Let F be monotone, and X be a subset 
of U. 
– X is F-closed if F(X) ⊆ X.
– X is F-consistent if X ⊆ F(X). 
– X is a fixed point of F if F(X) = X.
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Exercise: Consider the following generating function 
on the three-element universe U={a, b, c}:

E1(∅) = {c} 
E1({a}) = {c} 
E1({b}) = {c} 
E1({c}) = {b, c}
E1({a,b}) = {c} 
E1({a, c}) = {b, c} 
E1({b, c}) = {a, b, c} 
E1({a, b, c}) = {a, b, c}

Q: Which subset is E1-closed, E1-consistent?

Knaster-Tarski Theorem (1955)

Theorem
• The intersection of all F-closed sets is the least 

fixed point of F. 
• The union of all F-consistent sets is the greatest 

fixed point of F.

Definition: The least fixed point of F is written µF. 
The greatest fixed point of F is written νF.
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Exercise: Consider the following generating function 
on the three-element universe U={a, b, c}:

E1(∅) = {c} 
E1({a}) = {c} 
E1({b}) = {c} 
E1({c}) = {b, c}
E1({a,b}) = {c} 
E1({a, c}) = {b, c} 
E1({b, c}) = {a, b, c} 
E1({a, b, c}) = {a, b, c}

Q: What are µE1 and νE1?

Exercise: Suppose a generating function E2 on the 
universe {a, b, c} is defined by the following inference 
rules:

Q: Write out the set of pairs in the relation E2 
explicitly, as we did for E1 above. List all the E2-closed 
and E2-consistent sets. What are µE2 and νE2?
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Principles of Induction/Coinduction

Corollary:
• Principle of induction: 

If X is F-closed, then µF ⊆ X. 
• Principle of coinduction: 

If X is F-consistent, then X ⊆ νF.

The induction principle says that any property whose characteristic set
is closed under F is true of all the elements of the inductively defined set µF.

The coinduction principle, gives us a method for establishing that 
an element x is in the coinductively defined set νF.

21.2 Finite and Infinite Types

To instantiate the general definitions of 
greatest fixed points and the coinductive

proof method with the specifics of 
subtyping.
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Tree Type

Definition: A tree type (or, simply, a tree) is a partial function 
T ∈ {1,2}∗ ⇀ {→, ×,Top} satisfying the following constraints:
• T(•) is defined; 
• if T(π,σ) is defined then T(π) is defined; 
• if T(π) =→ or T(π) = × then T(π,1) and T(π,2) are defined; 
• if T(π) = Top then T(π,1) and T(π,2) are undefined.

Definition: A tree type T is finite if dom(T) is finite. 
The set of all tree types is written T; the subset of 
all finite tree types is written Tf .

Exercise: Give a universe U and a generating 
function F ∈ P(U) → P(U) such that the set of finite 
tree types Tf is the least fixed point of F and the 
set of all tree types T is its greatest fixed point.
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21.3 Subtyping

Finite Subtyping

Definition: Two finite tree types S and T are in the 
subtype relation (“S is a subtype of T”) if (S,T) ∈ µSf , 
where the monotone function 

Sf ∈ P(T f ×T f ) → P(T f ×T f ) 

is defined by 
Sf(R) = { (T,Top) | T ∈ T f } 

∪ { (S1×S2, T1×T2) | (S1,T1), (S2,T2) ∈ R} 
∪ { (S1→S2, T1→T2) | (T1,S1), (S2,T2) ∈ R}.
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Inference Rules

T <: Top 

S1 <: T1  S2 <: T2 
------------------

S1×S2 <: T1×T2

T1 <: S1 S2 <: T2 
-------------------
S1→S2 <: T1→T2

Infinite Subtyping

Definition: Two (finite or infinite) tree types S and T 
are in the subtype relation (“S is a subtype of T”) if 
(S,T) ∈ νS, where the monotone function 

S ∈ P(T ×T ) → P(T ×T ) 

is defined by 
S(R) = {(T,Top) | T ∈ T } 

∪ {(S1×S2,T1×T2) | (S1,T1), (S2,T2) ∈ R} 
∪ {(S1→S2,T1→T2) | (T1,S1), (S2,T2) ∈ R}.
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Inference Rules

T <: Top 

S1 <: T1  S2 <: T2 
------------------

S1×S2 <: T1×T2

T1 <: S1 S2 <: T2 
-------------------
S1→S2 <: T1→T2
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Transitivity

Definition: A relation R ⊆U×U is transitive
if R is closed under the monotone function 

TR(R) = {(x,y) | ∃z ∈ U. (x,z), (z,y) ∈ R},
i.e., if TR(R) ⊆ R.

Lemma: Let F ∈ P(U×U) →P(U×U) be a monotone 
function. If TR(F(R)) ⊆ F(TR(R)) for any R ⊆U×U, 
then νF is transitive.

Theorem: νS is transitive.

21.5 Membership Checking

Given a generating function F on some 
universe U and an element x ∈ U, check 

whether or not x falls in νF.
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Invertible Generating Function

Definition: A generating function F is said to be 
invertible if, for all x ∈ U, the collection of sets

Gx ={X ⊆ U | x ∈ F(X)} 
either is empty or contains a unique member that is 
a subset of all the others.

We will consider invertible generating function in 
the rest of this chapter.

F-Supported/F-Ground

When F is invertible, we define:

Definition: An element x is F-supported if supportF(x)↓; 
otherwise, x is F- unsupported. An F-supported element is 
called F-ground if supportF(x) = ∅.

Exercise: What is supportS(x)?



���������

��

Support Graph

• An Example of the support graph of E function on 
{a,b,c,d,e,f,g,h,i}

x is in the greatest fixed point iff no unsupported element is 
reachable from x in the support graph.

supported by

generated from

Greatest Fixed Point

Definition: Suppose F is an invertible generating 
function. Define the Boolean-valued function gfpF (or 
just gfp) as follows:

Theorem (Sound): 
1. If gfpF(X) = true, then X ⊆ νF. 
2. 2If gfpF(X) = false, then X ⊆ νF.

Theorem (Terminate): If reachableF(X) is finite, then 
gfpF(X) is defined. Consequently, if F is finite state, 
then gfpF(X) terminates for any finite X ⊆U.

/
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More Efficient Algorithms

Inefficiency

Recomputation of “support” 

gfp({a})
= gfp({a, b, c}) 
= gfp({a, b, c, e, f ,g}) 
= gfp({a, b, c, e, f ,g,d}) 
= true

support(a) is recomputed four times!
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A More Efficient Algorithm

Definition: Suppose F is an invertible generating 
function. Define the function gfpa as follows

Example:
Tail-recursion

Variation 1

Definition: A small variation on gfps has the 
algorithm pick just one element at a time from X 
and expand its support. The new algorithm is called 
gfps
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Variation 2

Definition: Given an invertible generating function F, 
define the function gfpt as follows:

Regular Trees

If we restrict ourselves to regular types, 
then the sets of reachable states will be 

guaranteed to remain finite and the 
subtype checking algorithm will always 

terminate.
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Regular Trees

Definition: A tree type S is a subtree of a tree type 
T if S = λσ. T(π,σ) for some π.

Definition: A tree type T ∈ T is regular if 
subtrees(T) is finite.

Examples:
• Every finite tree type is regular.
• T = Top x (Top x (Top x …)) is regular.
• T = B x (A x (B x (A x (A x (B x (A x (A x (A x (B 

…) is irregular.

Proposition: The restriction of the generating function S 
to regular tree types is finite state.

Proof: We need to show that for any pair (S,T) of 
regular tree types, the set reachable(S,T) is finite. 
Since reachable (S,T) ⊆ subtrees(S) ×subtrees(T); the 
latter is finite as S and T are regular.
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µ-Types

Establishes the correspondence between 
subtyping on µ-expressions and the 

subtyping on tree types

µ-Types:

Definition: Let X range over a fixed countable set 
{X1,X2,...} of type variables. The set of raw µ-types 
is the set of expressions defined by the following 
grammar:

Definition: A raw µ-type T is contractive (and called 
µ-types) if, for any subexpression of T of the form 
µX.µX1...µXn.S, the body S is not X.   

Tm
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Finite Notation for Infinite Tree Types

Definition: The function treeof , mapping closed µ-
types to tree types, is defined inductively as follows:



���������

��

Subtyping Correspondence: 
µ-Types and Tree Types
Definition: Two µ-types S and T are said to be in 
the subtype relation if (S,T) ∈ νSm, where the 
monotone function Sm ∈ P(Tm×Tm)→P(Tm×Tm) is 
defined by:

Theorem: Let (S,T) ∈ Tm×Tm. Then (S,T) ∈ νSm iff
(treeof S, treesof T) ∈ νS.

Exercise: What is the support for Sm?
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Subtyping Algorithm for µ-Types

Instantiating gfpt for subtyping relation on µ-Types.

Terminate?

Summary

• We study the theoretical foundation of type 
checkers (subtyping) for equi-recursive types.
– Induction/coinduction & proof principles
– Finite and Infinite Types/Subtyping
– Membership checking algorithm



���������

��

Homework


