
���������

�

Chapter 21: Metatheory of Recursive Types

Induction and Coinduction
Finite and Infinite Types/Subtyping

Membership Checking

21.1 Induction and Coinduction

���������

�

Universal Set U

U: everything in the world

Type: a subset of U

Inductive/Coinductive
Definition

Generating Function

• Definition: A function F ∈ P(U) → P(U) is monotone
if X ⊆ Y implies F(X) ⊆ F(Y).

• Definition: Let F be monotone, and X be a subset
of U.
– X is F-closed if F(X) ⊆ X.
– X is F-consistent if X ⊆ F(X).
– X is a fixed point of F if F(X) = X.

���������

�

Exercise: Consider the following generating function
on the three-element universe U={a, b, c}:

E1(∅) = {c}
E1({a}) = {c}
E1({b}) = {c}
E1({c}) = {b, c}
E1({a,b}) = {c}
E1({a, c}) = {b, c}
E1({b, c}) = {a, b, c}
E1({a, b, c}) = {a, b, c}

Q: Which subset is E1-closed, E1-consistent?

Knaster-Tarski Theorem (1955)

Theorem
• The intersection of all F-closed sets is the least

fixed point of F.
• The union of all F-consistent sets is the greatest

fixed point of F.

Definition: The least fixed point of F is written µF.
The greatest fixed point of F is written νF.

���������

�

Exercise: Consider the following generating function
on the three-element universe U={a, b, c}:

E1(∅) = {c}
E1({a}) = {c}
E1({b}) = {c}
E1({c}) = {b, c}
E1({a,b}) = {c}
E1({a, c}) = {b, c}
E1({b, c}) = {a, b, c}
E1({a, b, c}) = {a, b, c}

Q: What are µE1 and νE1?

Exercise: Suppose a generating function E2 on the
universe {a, b, c} is defined by the following inference
rules:

Q: Write out the set of pairs in the relation E2
explicitly, as we did for E1 above. List all the E2-closed
and E2-consistent sets. What are µE2 and νE2?

���������

�

Principles of Induction/Coinduction

Corollary:
• Principle of induction:

If X is F-closed, then µF ⊆ X.
• Principle of coinduction:

If X is F-consistent, then X ⊆ νF.

The induction principle says that any property whose characteristic set
is closed under F is true of all the elements of the inductively defined set µF.

The coinduction principle, gives us a method for establishing that
an element x is in the coinductively defined set νF.

21.2 Finite and Infinite Types

To instantiate the general definitions of
greatest fixed points and the coinductive

proof method with the specifics of
subtyping.

���������

�

Tree Type

Definition: A tree type (or, simply, a tree) is a partial function
T ∈ {1,2}∗ ⇀ {→, ×,Top} satisfying the following constraints:
• T(•) is defined;
• if T(π,σ) is defined then T(π) is defined;
• if T(π) =→ or T(π) = × then T(π,1) and T(π,2) are defined;
• if T(π) = Top then T(π,1) and T(π,2) are undefined.

Definition: A tree type T is finite if dom(T) is finite.
The set of all tree types is written T; the subset of
all finite tree types is written Tf .

Exercise: Give a universe U and a generating
function F ∈ P(U) → P(U) such that the set of finite
tree types Tf is the least fixed point of F and the
set of all tree types T is its greatest fixed point.

���������

�

21.3 Subtyping

Finite Subtyping

Definition: Two finite tree types S and T are in the
subtype relation (“S is a subtype of T”) if (S,T) ∈ µSf ,
where the monotone function

Sf ∈ P(T f ×T f) → P(T f ×T f)

is defined by
Sf(R) = { (T,Top) | T ∈ T f }

∪ { (S1×S2, T1×T2) | (S1,T1), (S2,T2) ∈ R}
∪ { (S1→S2, T1→T2) | (T1,S1), (S2,T2) ∈ R}.

���������

�

Inference Rules

T <: Top

S1 <: T1 S2 <: T2

S1×S2 <: T1×T2

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2

Infinite Subtyping

Definition: Two (finite or infinite) tree types S and T
are in the subtype relation (“S is a subtype of T”) if
(S,T) ∈ νS, where the monotone function

S ∈ P(T ×T) → P(T ×T)

is defined by
S(R) = {(T,Top) | T ∈ T }

∪ {(S1×S2,T1×T2) | (S1,T1), (S2,T2) ∈ R}
∪ {(S1→S2,T1→T2) | (T1,S1), (S2,T2) ∈ R}.

���������

�

Inference Rules

T <: Top

S1 <: T1 S2 <: T2

S1×S2 <: T1×T2

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2

���������

��

Transitivity

Definition: A relation R ⊆U×U is transitive
if R is closed under the monotone function

TR(R) = {(x,y) | ∃z ∈ U. (x,z), (z,y) ∈ R},
i.e., if TR(R) ⊆ R.

Lemma: Let F ∈ P(U×U) →P(U×U) be a monotone
function. If TR(F(R)) ⊆ F(TR(R)) for any R ⊆U×U,
then νF is transitive.

Theorem: νS is transitive.

21.5 Membership Checking

Given a generating function F on some
universe U and an element x ∈ U, check

whether or not x falls in νF.

���������

��

Invertible Generating Function

Definition: A generating function F is said to be
invertible if, for all x ∈ U, the collection of sets

Gx ={X ⊆ U | x ∈ F(X)}
either is empty or contains a unique member that is
a subset of all the others.

We will consider invertible generating function in
the rest of this chapter.

F-Supported/F-Ground

When F is invertible, we define:

Definition: An element x is F-supported if supportF(x)↓;
otherwise, x is F- unsupported. An F-supported element is
called F-ground if supportF(x) = ∅.

Exercise: What is supportS(x)?

���������

��

Support Graph

• An Example of the support graph of E function on
{a,b,c,d,e,f,g,h,i}

x is in the greatest fixed point iff no unsupported element is
reachable from x in the support graph.

supported by

generated from

Greatest Fixed Point

Definition: Suppose F is an invertible generating
function. Define the Boolean-valued function gfpF (or
just gfp) as follows:

Theorem (Sound):
1. If gfpF(X) = true, then X ⊆ νF.
2. 2If gfpF(X) = false, then X ⊆ νF.

Theorem (Terminate): If reachableF(X) is finite, then
gfpF(X) is defined. Consequently, if F is finite state,
then gfpF(X) terminates for any finite X ⊆U.

/

���������

��

More Efficient Algorithms

Inefficiency

Recomputation of “support”

gfp({a})
= gfp({a, b, c})
= gfp({a, b, c, e, f ,g})
= gfp({a, b, c, e, f ,g,d})
= true

support(a) is recomputed four times!

���������

��

A More Efficient Algorithm

Definition: Suppose F is an invertible generating
function. Define the function gfpa as follows

Example:
Tail-recursion

Variation 1

Definition: A small variation on gfps has the
algorithm pick just one element at a time from X
and expand its support. The new algorithm is called
gfps

���������

��

Variation 2

Definition: Given an invertible generating function F,
define the function gfpt as follows:

Regular Trees

If we restrict ourselves to regular types,
then the sets of reachable states will be

guaranteed to remain finite and the
subtype checking algorithm will always

terminate.

���������

��

Regular Trees

Definition: A tree type S is a subtree of a tree type
T if S = λσ. T(π,σ) for some π.

Definition: A tree type T ∈ T is regular if
subtrees(T) is finite.

Examples:
• Every finite tree type is regular.
• T = Top x (Top x (Top x …)) is regular.
• T = B x (A x (B x (A x (A x (B x (A x (A x (A x (B

…) is irregular.

Proposition: The restriction of the generating function S
to regular tree types is finite state.

Proof: We need to show that for any pair (S,T) of
regular tree types, the set reachable(S,T) is finite.
Since reachable (S,T) ⊆ subtrees(S) ×subtrees(T); the
latter is finite as S and T are regular.

���������

��

µ-Types

Establishes the correspondence between
subtyping on µ-expressions and the

subtyping on tree types

µ-Types:

Definition: Let X range over a fixed countable set
{X1,X2,...} of type variables. The set of raw µ-types
is the set of expressions defined by the following
grammar:

Definition: A raw µ-type T is contractive (and called
µ-types) if, for any subexpression of T of the form
µX.µX1...µXn.S, the body S is not X.

Tm

���������

��

Finite Notation for Infinite Tree Types

Definition: The function treeof , mapping closed µ-
types to tree types, is defined inductively as follows:

���������

��

Subtyping Correspondence:
µ-Types and Tree Types
Definition: Two µ-types S and T are said to be in
the subtype relation if (S,T) ∈ νSm, where the
monotone function Sm ∈ P(Tm×Tm)→P(Tm×Tm) is
defined by:

Theorem: Let (S,T) ∈ Tm×Tm. Then (S,T) ∈ νSm iff
(treeof S, treesof T) ∈ νS.

Exercise: What is the support for Sm?

���������

��

Subtyping Algorithm for µ-Types

Instantiating gfpt for subtyping relation on µ-Types.

Terminate?

Summary

• We study the theoretical foundation of type
checkers (subtyping) for equi-recursive types.
– Induction/coinduction & proof principles
– Finite and Infinite Types/Subtyping
– Membership checking algorithm

���������

��

Homework

