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Chapter 22: Type Reconstruction (Type Inference)

Calculating a Principal Type for a Term
Constraint-based Typing

Unification and Principle Types
Extension with let-polymorphism 

Type Variables and Type Substitution

• Type variable

• Type substitution: finite mapping from type 
variables to types.

X à X

σ = [X è Bool, Y è U]

dom(σ) = {X, Y}
range(σ) = {Bool, U}

Note: the same variables can be in both the domain and the range.
[X è Bool, Y è X→X]
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• Application of type substitution to a type:

• Type substitution composition

• Type substitution on contexts: 
– σ(x1:T1,...,xn:Tn) = (x1:σT1,... ,xn:σTn).

• Substitution on Terms: 
– A substitution is applied to a term t by applying it to 

all types appearing in annotations in t.

• Theorem [Preservation of typing under type 
substitution]: If σ is any type substitution and Γ
⊢ t : T, then σΓ ⊢ σt : σT.
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Two Views of Type Variables

• View 1: “Are all substitution instances of t well 
typed?” That is, for every σ, do we have 

σΓ ⊢ σt : T 
for some T?
– E.g., λf:X→X. λa:X. f (f a)

• View 2. “Is some substitution instance of t well 
typed?” That is, can we find a σ such that 

σΓ ⊢ σt : T 
for some T?
– E.g., λf:Y. λa:X. f (f a)

Parametric 
polymorphism

Type 
reconstruction

Type Reconstruction 

Definition: Let Γ be a context and t a term. A 
solution for (Γ,t) is a pair (σ,T) such that 
σΓ ⊢ σt : T.
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Constraint-based Typing

The constraint typing relation 
Γ ⊢ t : T |X C 

is defined as follows.

Exercise: Construct C from the term λx:X, λy:Y, λz:Z. x z (y z)
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• Extended with Boolean Expression

Definition: Suppose that Γ ⊢ t : S | C. A solution for 
(Γ,t,S,C) is a pair (σ,T) such that σ satisfies C and σS
= T.

Recall:
Definition: Let Γ be a context and t a term. A 
solution for (Γ,t) is a pair (σ,T) such that σΓ ⊢ σt : T.

What are the relation between these two solutions?
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Theorem [Soundness of constraint typing]: Suppose 
that Γ ⊢ t : T | C. If (σ,τ) is a solution for (Γ,t,T,C), 
then it is also a solution for (Γ,t).

Proof. By induction on constraint typing derivation.

Theorem [Completeness of constraint typing]: 
Suppose Γ ⊢ t : S |X C. 
If (σ,T) is a solution for (Γ ,t) and dom(σ) ∩ X = ∅, 
then there is some solution (σ′,T) for (Γ ,t,S,C) such 
that σ′\X = σ.

Proof: By induction on the given constraint typing 
derivation.



���������

�

Unification 

• Idea from Hindley (1969) and Milner (1978) for 
calculating “best” solution to constraint sets.

Definition: A substitution σ is less specific (or more 
general) than a substitution σ′, written σ ⊑ σ′, if         

σ′ = γ ◦ σ
for some substitution γ.

Definition: A principal unifier (or sometimes most 
general unifier) for a constraint set C is a 
substitution σ that satisfies C and such that σ ⊑ σ′
for every substitution σ′ satisfying C.

Exercise: Write down principal unifiers (when they 
exist) for the following sets of constraints:
• {X = Nat, Y = X→X}
• {Nat→Nat = X→Y} 
• {X→Y = Y→Z, Z = U→W}
• {Nat = Nat→Y} 
• {Y = Nat→Y}
• {}
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Unification Algorithm

No cyclic

Theorem: The algorithm unify always terminates, 
failing when given a non-unifiable constraint set as 
input and otherwise returning a principal unifier. 

Proof.
Termination: define degree of C = (number of distinct type variables, 
total size of types).

Unify(C) returns a unifier: induction on the number of recursive calls of
unify. (Fact: σ unifies [X -> T]D, then σ ◦ [X->T] unifies {X = T}∪D)

It returns a principle unifier: induction on the number of recursive calls.
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Principle Types

• If there is some way to instantiate the type 
variables in a term, e.g.,

λx:X. λy:Y. λz:Z. (x z) (y z)
so that it becomes typable, then there is a most
general or principal way of doing so.

Theorem: It is decidable whether (Γ,t) has a solution.

Unification Algorithm

Implicit Type Annotation

Type reconstruction allows programmers to 
completely omit type annotations on lambda-
abstractions.
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Let-Polymorphism

• Code Duplication:

let doubleNat = λf:Nat→Nat. λa:Nat. f(f(a)) in 
let doubleBool = λf:Bool→Bool. λa:Bool. f(f(a)) in
let a = doubleNat (λx:Nat. succ (succ x)) 1 in 
let b = doubleBool (λx:Bool. x) false in ...Even

• One Attempt

let double = λf:X→X. λa:X. f(f(a)) in 
let a = double (λx:Nat. succ (succ x)) 1 in
let b = double (λx:Bool. x) false in …

This is not typable, since double can only be instantiated once. 
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• Solution: Unfolding “let” (perform a step of 
evaluation of let)

let double = λf. λa. f(f(a)) in 
let a = double (λx:Nat. succ (succ x)) 1 in 
let b = double (λx:Bool. x) false in …

Typable!

• Issue 1: what happens when the let-bound 
variable does not appear in the body:

let x = <utter garbage> in 5
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• Issue 2: Avoid re-typechecking when a let-variable 
appear many times in let x=t1 in t2.

1. Find a principle type T1 of t1.
2. Generalize T1 to a schema ∀X1...Xn.T1.
3. Extend the context with (x, ∀X1...Xn.T1).
4. Each time we encounter an occurrence of x in t2, look up 

its type scheme ∀X1...Xn.T1, generate fresh type variables 
Y1...Yn to instantiate the type scheme, yielding [X1 -> 
Y1,.. . , Xn -> Yn]T1, which we use as the type of x

Homework


