Chapter 22: Type Reconstruction (Type Inference)

Calculating a Principal Type for a Term
Constraint-based Typing
Unification and Principle Types
Extension with let-polymorphism

Type Variables and Type Substitution

• Type variable

 \[X \rightarrow X \]

• Type substitution: finite mapping from type variables to types.

 \[\sigma = \left[X \rightarrow \text{Bool}, Y \rightarrow U \right] \]

 \[\text{dom}(\sigma) = \{X, Y\} \]

 \[\text{range}(\sigma) = \{\text{Bool}, U\} \]

 Note: the same variables can be in both the domain and the range.

 \[\left[X \rightarrow \text{Bool}, Y \rightarrow X \rightarrow X \right] \]
• Application of type substitution to a type:

\[
\begin{align*}
\sigma(X) &= \begin{cases}
T & \text{if } (X \rightarrow T) \in \sigma \\
X & \text{if } X \text{ is not in the domain of } \sigma
\end{cases} \\
\sigma(\text{Nat}) &= \text{Nat} \\
\sigma(\text{Bool}) &= \text{Bool} \\
\sigma(T_1 \rightarrow T_2) &= \sigma T_1 \rightarrow \sigma T_2
\end{align*}
\]

• Type substitution composition

\[
\sigma \circ \gamma = \begin{cases}
X \rightarrow \sigma(T) & \text{for each } (X \rightarrow T) \in \gamma \\
X \rightarrow T & \text{for each } (X \rightarrow T) \in \sigma \text{ with } X \notin \text{dom(}\gamma\text{)}
\end{cases}
\]

• Type substitution on contexts:
 - \(\sigma(x_1:T_1, \ldots, x_n:T_n) = (x_1:\sigma T_1, \ldots, x_n:\sigma T_n)\).

• Substitution on Terms:
 - A substitution is applied to a term \(t\) by applying it to all types appearing in annotations in \(t\).

• Theorem [Preservation of typing under type substitution]: If \(\sigma\) is any type substitution and \(\Gamma \vdash t : T\), then \(\sigma \Gamma \vdash \sigma t : \sigma T\).
Two Views of Type Variables

- **View 1**: “Are all substitution instances of t well typed?” That is, for every σ, do we have
 $$\sigma\Gamma \vdash \sigma t : T$$
 for some T?
 - E.g., $\lambda f:X \rightarrow X. \lambda a:X. f (f a)$

- **View 2**: “Is some substitution instance of t well typed?” That is, can we find a σ such that
 $$\sigma\Gamma \vdash \sigma t : T$$
 for some T?
 - E.g., $\lambda f:Y. \lambda a:X. f (f a)$

Type Reconstruction

Definition: Let Γ be a context and t a term. A solution for (Γ, t) is a pair (σ, T) such that
$$\sigma\Gamma \vdash \sigma t : T.$$
Constraint-based Typing

The constraint typing relation
\[\Gamma \vdash t : T |_x C \]
is defined as follows.

Exercise: Construct C from the term \(\lambda x:X, \lambda y:Y, \lambda z:Z. x \ z (y \ z) \)
Extended with Boolean Expression

\[\begin{align*}
\Gamma \vdash \text{true : Bool} & \mid \varnothing \{} \quad \text{(CT-TRUE)} \\
\Gamma \vdash \text{false : Bool} & \mid \varnothing \{} \quad \text{(CT-FALSE)} \\
\Gamma \vdash t_1 : T_1 & \mid x_1, C_1 \\
\Gamma \vdash t_2 : T_2 & \mid x_2, C_2 \\
\Gamma \vdash t_3 : T_3 & \mid x_3, C_3 \\
X_1, X_2, X_3 & \text{ nonoverlapping} \\
C' & = C_1 \cup C_2 \cup C_3 \cup \{T_1 = \text{Bool}, T_2 = T_3\} \\
\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T_2 & \mid x_1 \cup x_2 \cup x_3, C' \quad \text{(CT-IF)}
\end{align*}\]

Definition: Suppose that \(\Gamma \vdash t : S \mid C\). A solution for \((\Gamma, t, S, C)\) is a pair \((\sigma, T)\) such that \(\sigma\) satisfies \(C\) and \(\sigma S = T\).

Recall:

Definition: Let \(\Gamma\) be a context and \(t\) a term. A solution for \((\Gamma, t)\) is a pair \((\sigma, T)\) such that \(\sigma \Gamma \vdash \sigma t : T\).

What are the relation between these two solutions?
Theorem [Soundness of constraint typing]: Suppose that $\Gamma \vdash t : T \mid C$. If (σ, τ) is a solution for (Γ, t, T, C), then it is also a solution for (Γ, t).

Proof. By induction on constraint typing derivation.
Unification

• Idea from Hindley (1969) and Milner (1978) for calculating “best” solution to constraint sets.

Definition: A substitution \(\sigma \) is less specific (or more general) than a substitution \(\sigma' \), written \(\sigma \sqsubseteq \sigma' \), if

\[
\sigma' = \gamma \circ \sigma
\]

for some substitution \(\gamma \).

Definition: A principal unifier (or sometimes most general unifier) for a constraint set \(C \) is a substitution \(\sigma \) that satisfies \(C \) and such that \(\sigma \sqsubseteq \sigma' \) for every substitution \(\sigma' \) satisfying \(C \).

Exercise: Write down principal unifiers (when they exist) for the following sets of constraints:

• \{\(X = \text{Nat}, Y = X \rightarrow X \)\}
• \{\(\text{Nat} \rightarrow \text{Nat} = X \rightarrow Y \)\}
• \{\(X \rightarrow Y = Y \rightarrow Z, Z = U \rightarrow W \)\}
• \{\(\text{Nat} = \text{Nat} \rightarrow Y \)\}
• \{\(Y = \text{Nat} \rightarrow Y \)\}
• \{\}
Theorem: The algorithm unify always terminates, failing when given a non-unifiable constraint set as input and otherwise returning a principal unifier.

Proof.
Termination: define degree of $C = \text{(number of distinct type variables, total size of types)}$.

$\text{Unify}(C)$ returns a unifier: induction on the number of recursive calls of unify. (Fact: σ unifies $[X \to T]D$, then $\sigma \circ [X \to T]$ unifies $\{X = T\}UD$)

It returns a principal unifier: induction on the number of recursive calls.
Principle Types

- If there is some way to instantiate the type variables in a term, e.g.,
 \[\lambda x: X. \lambda y: Y. \lambda z: Z. (x z) (y z) \]
 so that it becomes typable, then there is a most general or principal way of doing so.

Theorem: It is decidable whether \((\Gamma, t)\) has a solution.

Unification Algorithm

Implicit Type Annotation

Type reconstruction allows programmers to completely omit type annotations on lambda-abstractions.

\[
\frac{x \in X \quad \Gamma, x : X \vdash t_1 : T}{\Gamma \vdash \lambda x. t_1 : X \rightarrow T} \quad \text{(CT-AbsInf)}
\]
Let-Polymorphism

- Code Duplication:

\[
\text{let } \text{doubleNat} = \lambda f: \text{Nat} \rightarrow \text{Nat}. \ \lambda a: \text{Nat}. \ f(f(a)) \ \text{in}
\]
\[
\text{let } \text{doubleBool} = \lambda f: \text{Bool} \rightarrow \text{Bool}. \ \lambda a: \text{Bool}. \ f(f(a)) \ \text{in}
\]
\[
\text{let } a = \text{doubleNat} (\lambda x: \text{Nat}. \ \text{succ} (\text{succ} x)) \ 1 \ \text{in}
\]
\[
\text{let } b = \text{doubleBool} (\lambda x: \text{Bool}. \ x) \ \text{false} \ \text{in} \ ... \text{Even}
\]

- One Attempt

\[
\text{let } \text{double} = \lambda f: X \rightarrow X. \ \lambda a: X. \ f(f(a)) \ \text{in}
\]
\[
\text{let } a = \text{double} (\lambda x: \text{Nat}. \ \text{succ} (\text{succ} x)) \ 1 \ \text{in}
\]
\[
\text{let } b = \text{double} (\lambda x: \text{Bool}. \ x) \ \text{false} \ \text{in} \ ...
\]

This is not typable, since double can only be instantiated once.
• Solution: Unfolding “let” (perform a step of evaluation of let)

\[
\Gamma \vdash [x \rightarrow t_1] t_2 : T_2 \\
\Gamma \vdash \text{let } x = t_1 \text{ in } t_2 : T_2
\]

(T-LetPoly)

\[
\Gamma \vdash [x \rightarrow t_1] t_2 : T_2 \mid x \ C \\
\Gamma \vdash \text{let } x = t_1 \text{ in } t_2 : T_2 \mid x \ C
\]

(CT-LetPoly)

let double = \(\lambda f. \lambda a. f(f(a))\) in
let a = double (\(\lambda x: \text{Nat}. \text{succ} (\text{succ } x)\)) 1 in
let b = double (\(\lambda x: \text{Bool}. x\)) false in ...

• Issue 1: what happens when the let-bound variable does not appear in the body:

let x = <utter garbage> in 5
• **Issue 2**: Avoid re-typechecking when a let-variable appear many times in `let x=t1 in t2`.

1. Find a principle type T_1 of t_1.
2. Generalize T_1 to a schema $\forall X_1...X_n.T_1$.
3. Extend the context with $(x, \forall X_1...X_n.T_1)$.
4. Each time we encounter an occurrence of x in t_2, look up its type scheme $\forall X_1...X_n.T_1$, generate fresh type variables $Y_1...Y_n$ to instantiate the type scheme, yielding $[X_1 \rightarrow Y_1, ..., X_n \rightarrow Y_n]T_1$, which we use as the type of x.

Homework

22.5.5 EXERCISE[RECOMMENDED, *** *]: Combine the constraint generation and unification algorithms from Exercises 22.3.10 and 22.4.6 to build a typechecker that calculates principal types, taking the reconbase checker as a starting point. A typical interaction with your typechecker might look like:

```latex
\lambda x: X. x;
\ast \langle \text{fun} \rangle : X \rightarrow X
\lambda z: ZZ. \lambda y: YY. z \ (y \ \text{true});
\ast \langle \text{fun} \rangle : (\forall X. X \rightarrow \text{Bool} \rightarrow T) \rightarrow \text{Bool}
\lambda w: W. \text{if true then false else w \ false};
\ast \langle \text{fun} \rangle : (\text{Bool} \rightarrow \text{Bool}) \rightarrow \text{Bool}
```

Type variables with names like $\forall X_0$ are automatically generated.