











3















• Idea from Hindley (1969) and Milner (1978) for calculating "best" solution to constraint sets.

Definition: A substitution  $\sigma$  is less specific (or more general) than a substitution  $\sigma'$ , written  $\sigma \sqsubseteq \sigma'$ , if

 $\sigma' = \gamma \circ \sigma$ 

for some substitution  $\gamma$ .

Definition: A principal unifier (or sometimes most general unifier) for a constraint set C is a substitution  $\sigma$  that satisfies C and such that  $\sigma \sqsubseteq \sigma'$ for every substitution  $\sigma'$  satisfying C.





















- 1. Find a principle type T1 of t1.
- 2. Generalize T1 to a schema ∀X1...Xn.T1.
- 3. Extend the context with  $(x, \forall X1...Xn.T1)$ .
- Each time we encounter an occurrence of x in t2, look up its type scheme ∀X1...Xn.T1, generate fresh type variables Y1...Yn to instantiate the type scheme, yielding [X1 -> Y1,..., Xn -> Yn]T1, which we use as the type of x



