

## Universal Types

Zhenjiang Hu, Haiyan Zhao, <u>Yingfei Xiong</u>
Peking University, Spring Term



### Reminder: Final Presentation



- Presentation: 10 minutes / group
- Question and Answer: 4 minutes / group



## System F



- The foundation for polymorphism in modern languages
  - C++, Java, C#, Modern Haskell
- Discovered by
  - Jean-Yves Girard (1972)
  - John Reynolds (1974)
- Also known as
  - Polymorphic  $\lambda$ -calculus
  - Second-order  $\lambda$ -calculus
    - (Curry-Howard) Corresponds to second-order intuitionistic logic
  - Impredicative polymorphism (for the polymorphism mechanism)





- Considering HM-System. What is the type of this program?
- let  $f = \lambda x.x$  in let  $g = \lambda x.f$  (f x) in {g 5, g true}





Considering HM-System. What is the type of this program?

```
    (λf.
    let g = λx.f (f x) in
    {g 5, g true}
    ) (λx.x)
```





- Considering HM-System. What is the type of this program?
- let h= λx.x in
   (λf.
   let g = λx.f (f x) in
   {g 5, g true}
   ) h



## System F by Examples



```
id = \lambda X. \lambda x:X. x;
```

- ► id :  $\forall X$ .  $X \rightarrow X$  id [Nat];
- ► <fun> : Nat → Nat
  id [Nat] 0;
- ▶ 0 : Nat





- What are the types of the following terms?
  - double= $\lambda X$ .  $\lambda f: X \rightarrow X$ .  $\lambda a: X.f$  (f a)
  - double [Nat]
  - double [Nat→Nat]



## Key to Exercise



- What are the types of the following terms?
  - double= $\lambda X$ .  $\lambda f: X \rightarrow X$ .  $\lambda a: X.f$  (f a)
    - $\forall X. (X \rightarrow X) \rightarrow X \rightarrow X$
  - double [Nat]
    - (Nat→ Nat) →Nat→ Nat
  - double [Nat→Nat]
    - $((Nat \rightarrow Nat) \rightarrow Nat \rightarrow Nat) \rightarrow (Nat \rightarrow Nat) \rightarrow Nat \rightarrow Nat$



| Syntax |                                                           |                                           | Evaluation               |                                                                                                                                                                                                                                                                 | $t \rightarrow t'$            |
|--------|-----------------------------------------------------------|-------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| t ::=  | x<br>λx:T.t                                               | terms:<br>variable<br>abstraction         |                          | $rac{	extsf{t}_1 	o 	extsf{t}_1'}{	extsf{t}_2 	o 	extsf{t}_1' 	extsf{t}_2}$                                                                                                                                                                                    | (E-APP1)                      |
|        | λX.t type                                                 | application<br>abstraction<br>application |                          | $\frac{t_2 \to t_2'}{t_2 \to v_1 \; t_2'}$                                                                                                                                                                                                                      | (E-APP2)                      |
| v ::=  | λx:T.t abstra λX.t type abstra                            | values:<br>ction value<br>ction value     |                          | $\begin{array}{c} \mathbf{t}_{12}) \ \mathbf{v}_2 \longrightarrow [\mathbf{x} \mapsto \mathbf{v}_2] \mathbf{t}_{12} \\ \\ \hline \mathbf{t}_1 \longrightarrow \mathbf{t}_1' \\ \hline \mathbf{T}_2] \longrightarrow \mathbf{t}_1' \ [\mathbf{T}_2] \end{array}$ | (Е-АРРАВЅ)                    |
| T ::=  | T→T type o                                                | types:<br>pe variable<br>of functions     | (λX.t <sub>12</sub> ) [7 | $T_2$ ] $\rightarrow [X \mapsto T_2]t_{12}$ (E- $x:T \in \Gamma$                                                                                                                                                                                                | TAPPTABS)  Γ ⊢ t : T  (T-VAR) |
| Γ ::=  | Ø em                                                      | contexts:                                 | $\Gamma \vdash \lambda$  | $ \overline{\Gamma \vdash \mathbf{x} : T} $ $ \mathbf{x} : T_1 \vdash t_2 : T_2 $ $ \mathbf{x} : T_1 . t_2 : T_1 \to T_2 $                                                                                                                                      | (T-ABS)                       |
|        | Γ, x : T term variable binding Γ, X type variable binding |                                           |                          | $1 \rightarrow T_{12}$ $\Gamma \vdash t_2 : T_{11}$<br>$\vdash t_1 t_2 : T_{12}$                                                                                                                                                                                | (T-App)                       |
|        |                                                           |                                           |                          | $X \vdash t_2 : T_2$<br>$\lambda X \cdot t_2 : \forall X \cdot T_2$                                                                                                                                                                                             | (T-TABS)                      |
|        |                                                           |                                           |                          | $-t_1: \forall X.T_{12}$<br>$[T_2]: [X \mapsto T_2]T_{12}$                                                                                                                                                                                                      | (Т-ТАрр)                      |



- Can we type this term in simple typed  $\lambda$ -calculus?
  - $\lambda x.xx$





- Can we type this term in system F (by adding type declarations and arguments)?
  - $\lambda x. x x$





- Can we type this term in system F (by adding type declarations and arguments)?
  - $\lambda x \cdot x \cdot x$
- $\lambda x : \forall X . X \to X$ .  $\times [\forall X . X \to X] \times$
- double =  $\lambda X. \lambda x: X \rightarrow X. \lambda y: X. x x y$
- double:  $\forall X. (X \rightarrow X) \rightarrow (X \rightarrow X)$
- quadruple =  $\lambda X$ .  $\lambda$ double:  $\forall X$ .  $(X \rightarrow X) \rightarrow (X \rightarrow X)$ . double  $[X \rightarrow X]$  (double [X])





• Implment csucc for CNat so that  $c_i$  = csucc  $c_{i-1}$ 

CNat = 
$$\forall X$$
.  $(X \rightarrow X) \rightarrow X \rightarrow X$ ;  
 $c_0 = \lambda X$ .  $\lambda s: X \rightarrow X$ .  $\lambda z: X$ .  $z$ ;  
 $c_0 : CNat$   
 $c_1 = \lambda X$ .  $\lambda s: X \rightarrow X$ .  $\lambda z: X$ .  $s$   $z$ ;  
 $c_1 : CNat$   
 $c_2 = \lambda X$ .  $\lambda s: X \rightarrow X$ .  $\lambda z: X$ .  $s$   $s$   $s$   $s$ ;  
 $c_2 : CNat$ 





• Implment csucc for CNat so that  $c_i$  = csucc  $c_{i-1}$ 

```
CNat = \forall X. (X \rightarrow X) \rightarrow X \rightarrow X;
    c_0 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. z;
\triangleright c<sub>0</sub> : CNat
    c_1 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. s z:
► c<sub>1</sub> : CNat
    c_2 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. s (s z);

ightharpoonup c<sub>2</sub> : CNat
     scc = \lambda n. \lambda s. \lambda z. s (n s z);
```





• Implment csucc for CNat so that  $c_i$  = csucc  $c_{i-1}$ 

```
CNat = \forall X. (X \rightarrow X) \rightarrow X \rightarrow X;
    c_0 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. z;

ightharpoonup c<sub>0</sub> : CNat
    c_1 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. s z;
► c<sub>1</sub> : CNat
    c_2 = \lambda X. \lambda s: X \rightarrow X. \lambda z: X. s (s z);

ightharpoonup c<sub>2</sub> : CNat
   csucc = \lambdan:CNat. \lambdaX. \lambdas:X\rightarrowX. \lambdaz:X. s (n [X] s z);
► csucc : CNat → CNat
```

## Extending System F



- Introducing advanced types by directly copying the extra rules
  - Tuples, Records, Variants, References, Recursive types

• PolyPair =  $\forall X. \ \forall Y. \ \{X, Y\}$ 



# Can you define list in System F?



- List =...
- nil = ...
- cons = ...



## Can you define list in System F?



- List =  $\forall X. \mu A. < nil:Unit, cons:\{X, A\}>;$
- Let List  $X = \mu A$ . <nil:Unit, cons:{X, A}>
  - nil =  $\lambda X$ . <nil:Unit> as List X
  - cons =  $\lambda X$ .  $\lambda n: X \cdot \lambda I: List X. < cons = <math>\{n, I\} > as List X$
- cons [Nat] 2 (nil [Nat])
- tail =  $\lambda X$ .  $\lambda l$ : List X. case I of <nil=u> => nil <cons=p> => p.2
- Problem: List X exposes the internal structure
  - Solving this problem requires System F $\omega$



## Church Encoding



Read the book



## **Basic Properties**



- Preservation
- Progress
- Normalization
  - Every typable term halts.
  - Y Combinator cannot be written in System F.



## Efficiency Issue



Additional evaluation rule adds runtime overhead.

(
$$\lambda X.t_{12}$$
) [T<sub>2</sub>]  $\rightarrow$  [X  $\mapsto$  T<sub>2</sub>]t<sub>12</sub> (E-TAPPTABS)

- Solution:
  - Only use types in type checking
  - Erase types during compilation



## Removing types



```
erase(x) = x

erase(\lambda x:T_1. t_2) = \lambda x. erase(t_2)

erase(t_1 t_2) = erase(t_1) erase(t_2)

erase(\lambda X. t_2) = erase(t_2)

erase(t_1 [T_2]) = erase(t_1)
```

t reduces to  $t' \Rightarrow erase(t)$  reduces to erase(t')



## A Problem in Extended System F



- Do the following two terms the same?
  - $\lambda x. x$  ( $\lambda X.error$ );
  - $\lambda x.x$  error;



#### Review: Error



 $\Gamma \vdash error : T$ 

(T-Error)

New syntactic forms

t ::= ...

error

terms:

run-time error

New evaluation rules

error  $t_2 \rightarrow error$ 

 $v_1$  error  $\rightarrow$  error

 $t \rightarrow t'$ 

(E-APPERR1)

(E-APPERR2)

New typing rules

 $\Gamma \vdash error : T$ 

 $\Gamma \vdash \mathsf{t} : \mathsf{T}$ 

(T-ERROR)



## A Problem in Extended System F



- Do the following two terms the same?
  - $\lambda x. x$  ( $\lambda X.error$ ); // a value
  - $\lambda x$ . x error; // reduce to error
- A new erase function

```
erase_{v}(x) = x

erase_{v}(\lambda x:T_{1}.t_{2}) = \lambda x. erase_{v}(t_{2})

erase_{v}(t_{1}t_{2}) = erase_{v}(t_{1}) erase_{v}(t_{2})

erase_{v}(\lambda X.t_{2}) = \lambda ... erase_{v}(t_{2})

erase_{v}(t_{1}[T_{2}]) = erase_{v}(t_{1}) dummyv
```



#### Wells' Theorem



- Can we construct types in System F?
  - One of the longest-standing problems in programming languages
  - 1970s 1990s
- [Wells94] It is undecidable whether, given a closed term m of the untyped  $\lambda$ -calculus, there is some well-typed term t in System F such that erase(t) = m.



## Rank-N Polymorphism



- In AST, any path from the root to an ∀ passes the left of no more than N-1 arrows
  - $\forall X.X \rightarrow X$ :
    - Rank 1
  - $(\forall X.X \rightarrow X) \rightarrow Nat$ :
    - Rank 2
  - $((\forall X.X \rightarrow X) \rightarrow Nat) \rightarrow Nat$ :
    - Rank 3
  - $Nat \rightarrow (\forall X.X \rightarrow X) \rightarrow Nat \rightarrow Nat$ :
    - Rank 2
  - $Nat \rightarrow (\forall X.X \rightarrow X) \rightarrow Nat$ :
    - Rank 2



## Rank-N Polymorphism



- Rank-1 is HM-system
  - Polymorphic types cannot be passed as parameters
- Type inference for rank-2 is decidable
  - Polymorphic types cannot be used in high-order functional parameters
- Type inference for rank-3 or more is undecidable
- What is the rank of C++ template, Java/C# generics?
  - Rank-1, because any generic parameters passed to a function must be instantiated

