Chapter 9: Simply Typed Lambda-Calculus

Function Types
The Typing Relation
Properties of Typing
The Curry-Howard Correspondence
Erasure and Typability
Function Types

• $T_1 \rightarrow T_2$
 - classifying functions that expect arguments of type T_1 and return results of type T_2.
 (The type constructor \rightarrow is right-associative.
 $T_1 \rightarrow T_2 \rightarrow T_3$ stands for $T_1 \rightarrow (T_2 \rightarrow T_3)$)

• We will consider Booleans with lambda calculus
 - $T ::= \text{Bool}$
 $T \rightarrow T$

• Examples
 - $\text{Bool} \rightarrow \text{Bool}$
 - $(\text{Bool} \rightarrow \text{Bool}) \rightarrow (\text{Bool} \rightarrow \text{Bool})$
Assume all variables in Γ are different
Renaming if some are not
Type Derivation Tree

\[
\begin{align*}
&x : \text{Bool} \
\Rightarrow \quad x : \text{Bool} & \quad \text{T-VAR} \\
\hline
&x : \text{Bool} \vdash x : \text{Bool} & \quad \text{T-ABS} \\
\hline
&\vdash \lambda x : \text{Bool}. x : \text{Bool} \to \text{Bool} & \quad \text{T-TRUE} \\
\hline
&\vdash (\lambda x : \text{Bool}. x) \text{true} : \text{Bool} & \quad \text{T-APP}
\end{align*}
\]
Properties of Typing

Inversion Lemma
Uniqueness of Types
Canonical Forms
Safety: Progress + Preservation
Inversion Lemma

Lemma [Inversion of the Typing Relation]:

1. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
2. If $\Gamma \vdash \lambda x : T_1 \cdot t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$.
3. If $\Gamma \vdash t_1 \cdot t_2 : R$, then there is some type T_{11} such that $\Gamma \vdash t_1 : T_{11} \rightarrow R$ and $\Gamma \vdash t_2 : T_{11}$.
4. If $\Gamma \vdash \text{true} : R$, then $R = \text{Bool}$.
5. If $\Gamma \vdash \text{false} : R$, then $R = \text{Bool}$.
6. If $\Gamma \vdash \text{if} \ t_1 \ \text{then} \ t_2 \ \text{else} \ t_3 : R$, then $\Gamma \vdash t_1 : \text{Bool}$ and $\Gamma \vdash t_2, t_3 : R$. \square

Exercise: Is there any context Γ and type T such that $\Gamma \vdash x : T$?
Uniqueness of Types

- **Theorem** [Uniqueness of Types]: In a given typing context Γ, a term t (with free variables all in the domain of Γ) has at most one type. Moreover, there is just one derivation of this typing built from the inference rules that generate the typing relation.
Canonical Form

- **Lemma** [Canonical Forms]:
 - If \(v \) is a value of type \(\text{Bool} \), then \(v \) is either true or false.
 - If \(v \) is a value of type \(T_1 \rightarrow T_2 \), then \(v = \lambda x:T_1.t_2 \).
Progress

• **Theorem** [Progress]: Suppose t is a closed, well-typed term. Then either t is a value or else there is some t' with $t \rightarrow t'$.

Proof: By induction on typing derivations.

Closed: No free variable
Well-typed: $\vdash t : T$ for some T
Two Structural Lemmas

• **Lemma [Permutation]:** If $\Gamma \vdash t : T$ and Δ is a permutation of Γ, then $\Delta \vdash t : T$.

• **Lemma [Weakening]:** If $\Gamma \vdash t : T$ and x is not in $\text{dom}(\Gamma)$, then $\Gamma, x:S \vdash t : T$.

Note: All can be easily proved by induction on derivation
Preservation

- **Lemma** [Preservation of types under substitution]: If $\Gamma, x:S \vdash t:T$ and $\Gamma \vdash s:S$, then $\Gamma \vdash [x \to s]t:T$.

 Proof: By induction on derivation of $\Gamma, x:S \vdash t:T$.

- **Theorem** [Preservation]:
 If $\Gamma \vdash t:T$ and $t \to t'$, then $\Gamma \vdash t':T$.
The Curry-Howard Correspondence

- A connection between logic and type theory

<table>
<thead>
<tr>
<th>LOGIC</th>
<th>PROGRAMMING LANGUAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>propositions</td>
<td>types</td>
</tr>
<tr>
<td>proposition $P \supset Q$</td>
<td>type $P \rightarrow Q$</td>
</tr>
<tr>
<td>proposition $P \land Q$</td>
<td>type $P \times Q$ (see §11.6)</td>
</tr>
<tr>
<td>proof of proposition P</td>
<td>term t of type P</td>
</tr>
<tr>
<td>proposition P is provable</td>
<td>type P is inhabited (by some term)</td>
</tr>
</tbody>
</table>
Erasure and Typability

- Types are used during type checking, but do not appear in the compiled form of the program.

Definition: The erasure of a simply typed term \(t \) is defined as follows:

\[
\begin{align*}
erase(x) & = x \\
erase(\lambda x : T_1 . t_2) & = \lambda x . \ erase(t_2) \\
erase(t_1 t_2) & = \ erase(t_1) \ erase(t_2)
\end{align*}
\]

Theorem:

1. If \(t \rightarrow t' \) under the typed evaluation relation, then \(\ erase(t) \rightarrow \ erase(t') \).

2. If \(\ erase(t) \rightarrow m' \) under the typed evaluation relation, then there is a simply typed term \(t' \) such that \(t \rightarrow t' \) and \(\ erase(t') = m' \).

Untyped?
Curry-Style vs. Church-Style

• Curry Style
 – Syntax → Semantics → Typing
 – Semantics is defined on untyped terms
 – Often used for implicit typed languages

• Church Style
 – Syntax → Typing → Semantics
 – Semantics is defined only on well-typed terms
 – Often used for explicit typed languages
Homework

• Read Chapter 9.
• Do Exercise 9.3.9.

9.3.9 Theorem [Preservation]: If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$. □

Proof: Exercise [RECOMMENDED, 三星]. The structure is very similar to the proof of the type preservation theorem for arithmetic expressions (8.3.3), except for the use of the substitution lemma. □