
Design Principles of Programming Languages

Practices in Class

Zhenjiang Hu, Haiyan Zhao, Yingfei Xiong

Peking University, Spring Term, 2020

Chap 13-17

Code packages

– “fullref”

– “fullerror”

– “rcdsub”

– “fullsub”

– “joinsub”

– “joinexercise”

Practice #1

• Do exercise 17.3.1
– The joinexercise typechecker is an incomplete implementation

of the simply typed lambda-calculus with subtyping, records,
and conditionals: basic parsing and printing functions are
provided, but the clause for TmIf is missing from the typeof
function, as is the join function on which it depends. Add
booleans and conditionals (and joins and meets) to this
implementation.

– Refer to: §16.3 showed how adding booleans and
conditionals to a language with subtyping required extra
support functions for calculating the least upper bounds of a
given pair of types. The proof of Proposition 16.3.2 (see page
522) gave mathematical descriptions of the necessary
algorithms

3

Practice #2

• Do exercise 17.3.3

– the subtype check in the application rule fails, the error
message that our typechecker prints may not be very helpful
to the user. We can improve it by including the expected
parameter type and the actual argument type in the error
message.

– Error reporting can be greatly improved by changing the
subtype function so that, instead of returning true or false, it
either returns a trivial value (the unit value ()) or else raises
an exception.

– Reimplement the typeof and subtype functions to make all of
the error messages as informative as possible.

Design Principles of Programming Languages

Practices

Zhenjiang Hu, Haiyan Zhao, Yingfei Xiong

Peking University, Spring Term, 2020

Chap 18-19

Please refer to the package of “fullref”

Practice #1

• Do exercise 18.6.1

– Write a subclass of resetCounterClass with an additional
method dec that subtracts one from the current value stored
in the counter

– Use the fullref checker to test your new class

6

Practice #2

• Do exercise 18.7.1

– Define a subclass of backupCounterClass with two new
methods, reset2 and backup2, controlling a second “backup
register.” This register should be completely separate from
the one added by backupCounterClass: calling reset should
restore the counter to its value at the time of the last call to
backup (as it does now) and calling reset2 should restore the
counter to its value at the time of the last call to backup2.

– Use the fullref checker to test your new class

7

Practice # 3 (Option)

• Do exercise 19.4.3

– The operation of assigning a new value to the field of an
object is omitted from FJ to simplify its presentation, but it
can be added without changing the basic character of the
calculus very much.

– Using the treatment of references in Chapter 13 as a model.

8

Practice #4: Challenge (Option)

• Do exercise 19.5.5

– Starting from one of the lambda-calculus typecheckers, build
a typechecker and interpreter for Featherweight Java.

– Submit your typechecker and interpreter before June 3

9

