Chapter 18: Case Study: Imperative Objects

What Is Object-Oriented Programming?
Objects/Class
Implementation

Review

Preliminary: syntax,

operational semantics
2 Untyped lambda calculus
/ Simply typed lambda calculus

Simple extension: tuples/records,
sums, lists

7

i
]

Reference

4 Universal type: system F

What 1s Object-Oriented Programming

e Multiple representations
- Object (instances)
e Encapsulation
- Internal representation/implementation is hidden
® Subtyping
- Object interface (code reusing)
e Inheritance

- Class, subclass, superclass

e Open recursion.
- Self (this)

This chapter: lambda-calculus with subtyping, records, and
references can model all these features!

Object

e object = internal

state + set of methods

ref 1 in
= A_:Unit. !X,
= A_:Unit. x:=succ(!x)};

Object

® object = infernal state + set of operations

Cc = let|x|= ref 1 1in
{get| = A_:Unit. !x,
inc = A_:Un1t. x:=succ(!x)};

» Cc :|{get:Unit—Nat, inc:Unit-Unit}

Counter = {get : Unit—Nat, inc : Unit—Unit }

Object

® object invocation

c.inc unit;
» unit : Unit
c.get unit;
» 2 : Nat
(c.1nc unit; c.inc unit; c.get unit);

» 4 : Nat

Object Generator

e A function that creates and returns a new
counter every time it is called.

hewCounter =
A_:Un1t. let X = ref 1 1n
{get = A_:Unit. !X,
inc = A_:Unit. X:=succ(!x)};

» newCounter : Unit — Counter

Exercise: Can you define inc3 ¢ to apply inc of a counter ¢ three ftimes?
U

Subtyping

e Permit objects of many shapes to be manipulated
by the same client code.

newResetCounter =
A_:Unit. let X = ref 1 1n
{get = A_:Unit. !x,
inc = A_:Unit. X:=succ(!x),

reset = A_:Unit. x:=1};

» nhewResetCounter : Unit — ResetCounter

newResetCounter unit <: newCounter unit

Grouping Instance Variables

Allows a group
of variables

>

C

let r = {x=ref 1} 1in
{get = A_:Unit. !(r.x),
inc = A_:Unit. r.x:=succ(!(r

Counter

X))}

Simple Classes

e Describing the common functionality in one place

Abstract the methods with respect to the instance variables

counterClass =
Ar:CounterRep.
{get = A_:Unit. !(r.x),
inc = A_:Unit. r.x:=succ(!(r.x))}:

» counterClass : CounterRep — Counter

nhewCounter =
A_:Unit. let r = {Xx=ref 1} 1n
counterClass r;

Subclass

e The method bodies from one class can be reused
to define new classes

resetCounterClass =
Ar:CounterRep.
let super = counterClass r in

{get = super.get,
inc = super.inc,
reset = A_:Unit. r.x:=1};

» resetCounterClass : CounterRep — ResetCounter

newResetCounter =
A_:Unit. Tet r = {X=ref 1} in resetCounterClass r;

» newResetCounter : Unit — ResetCounter

Exercise (at class)

18.6.1 EXERCISE [RECOMMENDED, *x]|: Write a subclass of resetCounterClass with
an additional method dec that subtracts one from the current value stored in
the counter. Use the fullref checker to test your new class. O

Adding Instance Variables in Subclasses

e How to define a class of “backup counters” whose
reset method resets their state to whatever value

it has when we last called the method backup,
instead of resetting it to a constant value?

BackupCounter = {get:Unit—Nat, inc:Unit—-Unit,
reset:Unit—Unit, backup: Unit—Unit};

BackupCounterRep = {x: Ref Nat, b: Ref Nat};

backupCounterClass =

Ar:BackupCounterRep.
lTet super = resetCounterClass r 1in

{get = super.get,
inc = super.inc,
reset =19
backup =9

» backupCounterClass : BackupCounterRep — BackupCounter

backupCounterClass =
Ar:BackupCounterRep.
lTet super = resetCounterClass r 1in
{get = super.get,
inc = super.inc,
reset = A_:Unit. r.x:=!(r.b),
backup = A_:Unit. r.b:=!(r.x)};

» backupCounterClass : BackupCounterRep — BackupCounter

Calling Superclass Methods

e Extend the superclass’s behavior with something extra

funnyBackupCounterClass =
Ar:BackupCounterRep.
lTet super = backupCounterClass r 1ih
{get = super.get,
inc = A_:Unit. (super.backup unit; super.inc unit),
reset = super.reset,
backup = super.backup};

» funnyBackupCounterClass : BackupCounterRep — BackupCounter

Classes with Self

¢ Allowing the methods of classes to refer to each
other via self

setCounterClass =
Ar:CounterRep.
fix
(Aself: SetCounter.
{get = A_:Unit. !I(r.x),
set = Ai:Nat. r.x:=1,
inc = A_:Unit. self.set (succ (self.get unit))});

» setCounterClass : CounterRep — SetCounter

hewSetCounter =
A_:Unit. let r = {Xx=ref 1} 1in
setCounterClass r;

» newSetCounter : Unit — SetCounter

Open Recursion (Late Binding of Self)

“fix"” is moved from class definition to object creation

setCounterClass =
Ar:CounterRep.
Aself: SetCounter.
{get = A_:Unit. !(r.x),
set = A1:Nat. r.x:=1,
inc = A_:Unit. self.set (succ(self.get unit))};

» setCounterClass : CounterRep — SetCounter — SetCounter

newSetCounter =
A_:Unit. let r = {x=ref 1} 1n
fix (setCounterClass r);
» newSetCounter : Unit — SetCounter

e Advantage: allowing a superclass to call a method
of a subclass

Example: building a subclass of our set-counters that
keeps track of how many times the set method has been called:

InstrCounterRep = {x: Ref Nat, a: Ref Nat};

instrCounterClass =
Ar:InstrCounterRep.
Aself: InstrCounter.
let super = setCounterClass r self in
{get = super.get,
set = Ai:Nat. (r.a:=succ(!(r.a)); super.set i),
inc = super.inc,
accesses = A_:Unit. !(r.a)};
» instrCounterClass : InstrCounterRep -
InstrCounter — InstrCounter

Open Recursion and Evaluation Order

e Problem with instrCounterClass: we cannot use it

to build instances!
Object generator

hewInstrCounter =
A_:Unit. Tet r = {x=ref 1, a=ref 0} 1n
fix (instrCounterClass r);

» hewInstrCounter : Unit — InstrCounter

Its evaluation
diverges

1c = newInstrCounter unit;

e Solution: delay the evaluation of self

setCounterClass =
Ar:CounterRep.
Aself: Unit—SetCounter.
A_:Unit.
{get = A_:Unit. !(r.x),
set = Ai:Nat. r.x:=1,
inc = A_:Unit. (self unit).set(succ((self unit).get unit))};

» setCounterClass : CounterRep -
(Unit—SetCounter) — Unit — SetCounter

newSetCounter =
A_:Unit. let r = {x=ref 1} 1in
fix (setCounterClass r) unit;

» newSetCounter : Unit — SetCounter

instrCounterClass =
Ar:InstrCounterRep.
Aself: Unit—InstrCounter.
A_:Unit.
lTet super = setCounterClass r self unit in

{get = super.get,
set = Ai:Nat. (r.a:=succ(!(r.a)); super.set i),
inc = super.inc,
accesses = A_:Unit. !(r.a)};

» instrCounterClass : InstrCounterRep —
(Unit—InstrCounter) — Unit — InstrCounter

newInstrCounter =
A_:Unit. let r = {x=ref 1, a=ref 0} 1in
fix (instrCounterClass r) unit;

» newlInstrCounter : Unit — InstrCounter

More Efficient Implementation

All the “delaying” we added has an unfortunate side effect:

Instead of computing the "method table” just once, when an object is
created, we will now re-compute it every time we invoke a method!

*

Section 18.12 in the book shows how this can be repaired by using
references instead of fix to “tie the knot” in the method table.

