
Chapter 18: Case Study: Imperative Objects

What Is Object-Oriented Programming?
Objects/Class
Implementation



Review



Preliminary: syntax, 
operational semantics

Untyped lambda calculus

Simply typed  lambda calculus

Simple extension: tuples/records, 
sums, lists

Subtyping

FJ

Universal type: system F

Recursive Types

Typing
ADT

Case Study

Reference



What is Object-Oriented Programming

• Multiple representations
– Object (instances)

• Encapsulation
– Internal representation/implementation is hidden

• Subtyping
– Object interface (code reusing)

• Inheritance
– Class, subclass, superclass

• Open recursion.
– Self (this)

This chapter: lambda-calculus with subtyping, records, and
references can model all these features!



Object

• object = internal state + set of methods

Counter  =  {get : Unit→Nat,  inc : Unit→Unit }



Object

• object = internal state + set of operations

Counter  =  {get : Unit→Nat,  inc : Unit→Unit }



Object

• object invocation



Object Generator

• A function that creates and returns a new 
counter every time it is called.

Exercise: Can you define inc3 c to apply inc of a counter c three times?



Subtyping

• Permit objects of many shapes to be manipulated 
by the same client code.

newResetCounter unit  <:  newCounter unit



Grouping Instance Variables

Allows a group 
of variables



Simple Classes

• Describing the common functionality in one place

Abstract the methods with respect to the instance variables



Subclass

• The method bodies from one class can be reused 
to define new classes



Exercise (at class)



Adding Instance Variables in Subclasses

• How to define a class of “backup counters” whose 
reset method resets their state to whatever value 
it has when we last called the method backup, 
instead of resetting it to a constant value?



?
?





Calling Superclass Methods

• Extend the superclass’s behavior with something extra



Classes with Self

• Allowing the methods of classes to refer to each 
other via self



Open Recursion (Late Binding of Self)

“fix” is moved from class definition to object creation



• Advantage: allowing a superclass to call a method 
of a subclass
Example: building a subclass of our set-counters that
keeps track of how many times the set method has been called:

InstrCounterRep = {x: Ref Nat, a: Ref Nat};



Open Recursion and Evaluation Order

• Problem with instrCounterClass: we cannot use it 
to build instances!

Its evaluation 
diverges

Object generator

WHY?



• Solution: delay the evaluation of self 





More Efficient Implementation

All the “delaying” we added has an unfortunate side effect: 

Instead of computing the “method table” just once, when an object is 
created, we will now re-compute it every time we invoke a method!

Section 18.12 in the book shows how this can be repaired by using 
references instead of !ix to “tie the knot” in the method table.


