Chapter 5: The Untyped Lambda Calculus

What is lambda calculus for?
Basics: syntax and operational semantics
Programming in the Lambda Calculus
Formalities (formal definitions)




Review

e Core messages in the previous lecture

— (Untyped) programming languages are defined by syntax and
semantics

— Syntax is often specified by grammars

— Semantics can be specified in three ways, and this book chooses
operational semantics expressed as evaluation rules

— Big step vs small step semantics




Story of Turing and Church

Alonzo Church Alan Turing
Lambda Calculus Turing Machine




What i1s Lambda calculus for?

e A core calculus (used by Landin) for
— capturing the language’s essential mechanisms,

— with a collection of convenient derived forms whose behavior is
understood by translating them into the core

e A formal system invented in the 1920s by Alonzo Church
(1936, 1941), in which all computation is reduced to the
basic operations of function definition and application.




Basics




Syntax

e The lambda-calculus (or A-calculus) embodies this kind of
function definition and application in the purest possible
form.

t = terms:
X variable
AX.t abstraction

tt application




Abstract Syntax Trees

e (st)u (orsimply writtenasstu)

apply

/N

apply

AN



Abstract Syntax Trees

* AXx. (Ay. ((xy)x))
(or simply written as Ax. Ay. xy x )

AX

Ay

apply

/ N\

apply X



Scope

e An occurrence of the variable x is said to be bound when
it occurs in the body t of an abstraction Ax.t.

— Axis a binder whose scope is t. A binder can be renamed: e.g.,
AX.X = Ay.y.

— So-called: alpha-renaming

e An occurrence of x is free if it appears in a position
where it is not bound by an enclosing abstraction on x.

— Exercises: Find free variable occurrences from the following
terms: x y, Ax.x, Ay. x y, (Ax.x) x.




Operational Semantics

e Beta-reduction: the only computation

(AX. ty2) to — [X — t2]tyo,

“the term obtained by replacing all free occurrences of x int;, by t, “

A term of the form (Ax.t12) t2 is called a redex.

e Examples:

(AX.X)y 2y

(AX. X (Ax.X)) (ur) =2 ur (Ax.x)




Evaluation Strategies

e Full beta-reduction
— Any redex may be reduced at any time.

e Example:

— Let id = Ax.x. We can apply beta reduction to any of the following
underlined redexes:

id (id (Az. id z2))
id ((0d (Az. id z)))
id (id (Az. 1d z))

Note: lambda calculus is confluent under full beta-reduction.
Ref. Church-Rosser property.




Evaluation Strategies

e The normal order strategy
— The leftmost, outmost redex is always reduced first.

id (id (Az. 1id 2))
— id (Az. id 2)
— Az.1id 2z
— Az.z




Evaluation Strategies

e The call-by-name strategy

— A more restrictive normal order strategy, allowing no reduction
inside abstraction.

id (id (Az. id z))
—  id (Az. id 2)
Az. 1d z

L




Evaluation Strategies

e The call-by-value strategy

— only outermost redexes are reduced and where a redex is
reduced only when its right-hand side has already been reduced

to a value
— Value: a term that cannot be reduced any more.

id (id (Az. id 2))
— 1id (Az. id 2)
Az. 1d z

L




Programming in the Lambda Calculus

Multiple Arguments
Church Booleans
Pairs
Church Numerals
Recursion




Multiple Arguments

f(x,y)=s

currying@

fx y=s

U

f=Ax. Ay.s




Church Booleans

e Boolean values can be encoded as:

tru = At. AMf. t
fls = At. Af. f

e Boolean conditional and operators can be encoded as:

test=Al. Am.An.Imn
and = Ab. Ac. b cfls




Church Booleans

e An Example

test truvw
= (Al. Am. An. Imn) truvw
—  (Am. An. trumn) vw
—  (An. truvn) w
—  truwvw
= (At Af.t) vw
—  (Af. v)w
— ¥




Church Booleans

e Canyou define or?

e or = Aa.Ab.atrub




Church Numerals

e Encoding Church numerals:

Cp = AS. AZ. Z;

€, = As. Az. 5 Z;

C» = As. AZz. 5 (5 Z2):

Cz; = As. Az. s (s (5 z));

etc.
e Defining functions on Church numerals:

succ =An. As. Az. s (n s z);
plus =Am.An.As.Az. ms (n s z);
times = Am. An. m (plus n) cO;




Church Numerals

e Can you define minus?

e Suppose we have pred, can you define minus?

- im.An.npred m

e Can you define pred?

- An.As.Az.n (/Lg./lh. h (g S)) (Au.z) (Au.u)

— Basic idea: skipping the last application of s

- (Au. z) -- a wrapped zero

— (Au.u) —the last application to be skipped

- (xlg. Ah.h (g S)) -- apply h if it is the last application, otherwise
apply g

— Tryn=0, 1, 2 to see the effect




Pairs

e Encoding

pair = AT.As.Ab. b T s;
fst = Ap. p tru;
snd = Ap. p Tls;

e An Example

fst (pairvw)
= fst ((Af. As. Ab. b fs) vw)
—  fst ((As. Ab. bwvs)w)
—  fst (Ab. bvw)
= (Ap.ptru) (Ab. bvw
—  (Ab. bwvw) tru
—  truwvw
— Y




Recursion

e Terms with no normal form are said to diverge.
omega = (Ax. x X) (AX. X x);

e Fixed-point combinator
fix = Af. (Ax. f(Ay. x xy)) (Ax. f (Ay. xxV));

Note: fix f = f (Ay. (fix f) y)




Recursion

e Basic ldea:
A recursive definition: h = <body containing h>

U

g = AMf . <body containing >
h=fixg




Recursion

e Example:
fac=An.ifegncO
then cl
else times n (fac (pred n)

W

g=Af.An.ifeqncO

then cl

else times n (f (pred n)
fac=fix g

Exercise: Check that fac c3 = c6.




fix

Y Combinator

Y=Af. (Ax. T (xx)) (Ax. T (xx))

= Af. (Ax. T (Ay. x x y)) (Ax. f (Ay. X x y))

e Yf=Ff(YT)
e Why fix is used instead of Y?



Answer

fix = Af. (Ax. £ Qy. x x y)) (Ax. £ (Ay. x x y))

Y=Af. (Ax. f (xx)) (Ax. f (xx))

e Assuming call-by-value
- (x x) isnotavalue
— while (ly. x x y)is
— Y will diverge for any f




Formalities (Formal Definitions)

Syntax (free variables)
Substitution
Operational Semantics




Syntax

e Definition [Terms]: Let V be a countable set of variable
names. The set of terms is the smallest set T such that

1.x € Tforeveryx €V,
2.ift, & Tandx € V,thenAx.t; €T,
3.1ftleTandt, €T, thent t, € T.

e Free Variables
FV(x) = {x}

FV(Ax.t;) = FV(t,) \ {x}
FV(t, t,) = FV(t,) U FV(t,)




Substitution

[x — 5]x = 5

[x — s]y =y if v + x

[x —s](Ay.t1) = Ay. [x~ 5]t ify+xandy ¢ FVis)
[x = s](t; tz) = [x~—s]t [x—s]t;

Alpha-conversion: Terms that differ only in the names of bound variables are
interchangeable in all contexts.

Example:

[x 2 yz] (Ay. xy)
[x 2 v z] (Aw. x W)
Aw.yzw




Operational Semantics

Ax.t
tt

AX.tT

terms:
variable
abstraction
application

values:
abstraction value

Evaluation

(Ax.t12) vz — [x—v2]tys

Tt— 1t

(E-APP1)

(E-APP2)

(E-APPABS)




Summary

e What is lambda calculus for?
— A core calculus for capturing language essential mechanisms
— Simple but powerful
e Syntax
— Function definition + function application
— Binder, scope, free variables
e QOperational semantics
— Substitution

— Evaluation strategies: normal order, call-by-name, call-by-value




Homework

e Understand Chapter 5.
e Do exercise 5.3.6 in Chapter 5.

5.3.6  EXERCISE [*x]: Adapt these rules to describe the other three strategies for
evaluation—full beta-reduction, normal-order, and lazy evaluation. O




