Chapter 9: Simply Typed Lambda-Calculus

Function Types
The Typing Relation
Properties of Typing
The Curry-Howard Correspondence
Erasure and Typability

Function Types

e T1->T2

— classifying functions that expect arguments of type T1 and
return results of type T2.

(The type constructor = is right-associative.
T1->T2->T3 stands for T1>(T2->T3))

e We will consider Booleans with lambda calculus
— T:= Bool
T>T

e Examples
— Bool->Bool
— (Bool->Bool) - (Bool-Bool)

Syntax
t o= terms:
X variable
AX :T .t abstraction
tt application
v o= values:
Ax :T .t abstraction value
T = types:
T—T type of functions
I == contexts:
& empty context
I,x:T term variable binding

Assume all variables in I are different
Renaming if some are not

Evaluation t— 1t
t] — 1)
- (E-APP1)
Tt — 1) 2
t; — T
2 (E-APp2)

v T — v t‘rz

(Ax :Ty1 .t12) v2 — [x — v2]t12 (E-APPABS)

Typing Il" i TI
x:TeTl

_— -VAR

IF'e=x:T T)

Ix:Ty =1t : T (T-ABS)

F'Ax:T1.t2 : T1—=T2

T ol o | :Tll_"T.lE I'e t :Tll
't t2 T2

Type Derivation Tree

X:Bool € x:Bool

T-VAR
X:Bool - x : Bool

T-ABS T-TRUE
 Ax:Bool.x : Bool—Bool - true : Bool

T-APP
 (Ax:Bool.x) true : Bool

Properties of Typing

Inversion Lemma
Unigueness of Types
Canonical Forms
Safety: Progress + Preservation

Inversion Lemma

LEMMA [INVERSION OF THE TYPING RELATION]:
l. fT+-x: R thenx:ReT.

2. HT+HAx:Ty. t> : R, thenR=T,—R; for some R, with I, x:T; + t2 : Rs.

3. T+ t; t- : R, then there is some type Ty, suchthatT - t; : T;;—-R and
'tz Ty1.

4. T+ true : R, then R = Bool.
. If T+ false : R, then R = Bool.

i

6. fT+~1if t; then ty elsety : R, thenT - t; : Bool andT'+ t>,t3 : R. O

Exercise: Is there any context I' and type T such that I - x x:T?

Unigueness of Types

e Theorem [Uniqueness of Types]: In a given typing
context I, a term t (with free variables all in the domain
of ') has at most one type. Moreover, there is just one

derivation of this typing built from the inference rules
that generate the typing relation.

Progress

e Theorem [Progress]: Suppose t is a closed, well-typed
term. Then either tis a value or else there is some t’
witht > t'.

Proof: By induction on typing derivations.

Closed: No free variable
Well-typed: -t : TforsomeT

Preservation

e Lemma [Preservation of types under substitution]: If T,
X:SFt:Tand lks:S,

then MN-[x—=2s]t:T.

Proof: By induction on derivation of I, x:S -t : T.

e Theorem [Preservation]:
If Tt:T and t ->t', then I -t' :T.

The Curry-Howard Correspondence

e A connection between logic and type theory

LOGIC PROGRAMMING LANGUAGES
propositions types

proposition P — type P—Q

proposition P A Q type PxQ (see §11.6)

proof of proposition P term t of type P
proposition P is provable type P is inhabited (by some term)

Erasure and Typability

e Types are used during type checking, but do not appear
in the compiled form of the program.

DEFINITION: The erasure of a simply typed term t is defined as follows:

erase(x) = X

erase(Ax:T;. t2) = Ax. erase(t:)

erase(t; t») = egrase(t)) erase(t:)
THEOREM;:

1. If t — t" under the typed evaluation relation, then erase(t) — erase(t’).

2. If erase(t) — m’ under the typed evaluation relation, then there is a simply
typed term t’ such that t — t" and erase(t’) =m'. u

Untyped?

Curry-Style vs. Church-Style

e Curry Style
— Syntax = Semantics =2 Typing
— Semantics is defined on untyped terms
— Often used for implicit typed languages

e Church Style
— Syntax = Typing = Semantics
— Sematnics is defined only on well-typed terms
— Often used for explicit typed languages

Homework

e Read Chapter 9.
e Do Exercise 9.3.9.

9.3.9 THEOREM |PRESERVATION]|: fI'—t : Tand t — t', thenl'~ t’ : T. O

Proof: EXERCISE [RECOMMENDED, **x|. The structure is very similar to the
proof of the type preservation theorem for arithmetic expressions (8.3.3),
except for the use of the substitution lemma. O

