%ﬁﬁng = EI’J DRD-I_}?EE

Design Principles of Programming Languages

Zhenjiang Hu, Haiyan Zhao, Yingfei Xiong
oL, #XEdk. RETRK

Peking University, Spring Term, 2021

Self-Introduction

Zhenjiang Hu

Zhenjiang Hu

Professor and Chair
Department of Computer Science and Technology
Peking_University

Professor (by special appointment)
Programming_Research Laboratory
National Institute of Informatics (NII)

| just joined Peking University as a professor and the chair of Department of Computer Science and
Technology in 2019. In the transition period, | am also a professor by special appointment in Information
Systems Architecture Research Division of Nll, and a visiting professor in Department of Informatics of
SOKENDAIL. | received BS and MS degrees from Department of Computer Science and Engineering of
Shanghai Jiaotong_Unviersity in 1988 and 1991 respectively, and PhD degree from Department of
Information Engineering of University of Tokyo in 1996. | became a lecturer (assistant professor) in 1997
and an associate professor in 2000 in University of Tokyo. | joined National Institute of Informatics as a full
professor in 2008. | was a full professor in Department of Communication and Information Engineering of
University of Tokyo for the period of 2018-2019.

| am Fellow of JFES (Japan Federation of Engineering Society, 2016), ACM Distinguished Scientist (2016),
Member of Academy of Europe (2019) and Fellow of IEEE (2020).

http://sei.pku.edu.cn/~hu/

About Me

e 1988: BS, Computer Science, Shanghai Jiaotong Univ.
e 1991: MS, Computer Science, Shanghai Jiaotong Univ.
e 1996: PhD, Information Engineering, Univ. of Tokyo

e 1996: Assistant Professor, Univ. of Tokyo

e 1997: Lecturer, Univ. of Tokyo

e 2000: Associate Professor, Univ. of Tokyo

e 2008: Full Professor, National Institute of Informatics
e 2018: Full Professor, Nll/University of Tokyo

e 2019: Full Professor, Peking University

Fellow of JFES, Member of Academy of Europe
Fellow of IEEE, ACM Distinguished Scientist

Research Interest

e Functional Programming
— Calculating Efficient Functional Programs
— ACM ICFP 2011 General Co-Chair
— ACM ICFP Steering Committee Co-Chair (2012-2013)
— AMC Haskell Symposium Steering Committee Member (2014-)

e Algorithmic Languages and Calculi

— Parallel programming and Automatic Parallelization
— IFIP WG 2.1 Member (IFIP TC 2, Japan Representative)

e Bidirectional Transformation Languages in SE
— Bidirectional languages for software evolution
— Steering Committee Member of BX, ICMT

About Prof. Zhao

e 2003 : PhD, Univ. of Tokyo
e 2003 - : Associate Professor, Peking Univ.

e Research Interest

— Software engineering

— Requirements Engineering, Requirements reuse in particular
— Model transformations

— Programming Languages

e (Contact:
— Office: Rm. 1809, Science Blg #1
— Email : zhhy@sei.pku.edu.cn

— Phone : 62757670

About Prof. Xiong

e 2009: PhD, Univ. of Tokyo

e 2009-2011: Postdoc, Univ. of Waterloo
e 2012: Assistant Professor, Peking Univ.
e 2018: Associate Professor, Peking Univ.

e Research Interest
— Program Analysis
— Program Repair
— Program Synthesis

e (Contact:
- ER—51#14315E8)
— Mail : xiongyf@pku.edu.cn
— Tel : 62757008

Course Overview

Designing Programming Languages is an Art

e Artvs. Knowledge
— Art cannot be taught, while knowledge can
— What in general people have invented
— How to reason their properties formally

e Why formal reasoning important
— Poorly designed languages widely used
e Java array flaw
e PHP, Javascript, etc.
— Well designed language needs strictly reasoning
e A small set of general, consistent principles
e Devils in details

The three worst programming languages:
https://medium.com/smalltalk-talk/the-three-worst-programming-languages-blec25a232c1#.jdsfib20v

9

What i1s this course about?

e Study fundamental (formal) approaches to describing
program behaviors that are both precise and abstract.

— precise so that we can use mathematical tools to formalize and
check interesting properties

— abstract so that properties of interest can be discussed clearly,
without getting bogged down in low-level details

10

What you can get out of this course?

e A more sophisticated perspective on programs,
programming languages, and the activity of
programming

— How to view programs and whole languages as formal,
mathematical objects

— How to make and prove rigorous claims about them

— Detailed study of a range of basic language features

e Powerful tools/techniques for language design,
description, and analysis

11

This course 1s not about ...

e An introduction to programming

e A course on compiler

e A course on functional programming

e A course on language paradigms/styles

All the above are certainly helpful for your
deep understanding of this course.

12

What background is required?

e Basic knowledge on
— Discrete mathematics: sets, functions, relations, orders
— Algorithms: list, tree, graph, stack, queue, heap
— Elementary logics: propositional logic, first-order logic

e Familiar with a programming language and basic
knowledge of compiler construction

13

Textbook

e Types and Programming Languages
e {E&: Benjamin Pierce

o HAR%L: The MIT Press

e HAREE: 2002-02-01

o TUZX: 648

o TEAT: USD 72.00

e ZXMNi: Hardcover

e |SBN: 9780262162098

14

Types and

Programming

Languages

Grading

15

Activity in class / Mid-Term Test: 20%
Homework: 40%

Final (Report/Presentation): 40%

QI — MRRGIVERFIES, ARSI, AEEARTH

C B RN RIEE S

+ R RA BRERTRISERSS,
RIERSIERFH EREAR T AR E2YE.

- R RERG, EEHRMERKTISRE.

- R RERG, EESHNH TR YR

c R RERG, RIS EERE TR ER

c B EORIRES, RIFSHNRARIBR M

- IR THIREIEES, mEMFREHETIES
FERE IR B4R

T E

S=ibopriniES il

e FTH : ENEERIEES
- =& S[AProlog

o FiH : LE

miTia =

- BTF4&EHmRIEE, BB 3TN EEFAES
o IKFIH ZIEMB 1FHK HBILZ LR Latex
— lLatexBBARERLZEN, 81T — TG, vIRUERIEN

B/ Latex

o BKISHE, PRINER, AXFhE : HRpSIEENIGRIZES
- EENIREESEERIE - LHRIHTARES, Rt

IR S RELX NI

. BB ETT : AIIINESRIERIGHES

— ffLlambda Calculus ENOIABIGESMF, B EmEFEARSMT
SolversKuEBA M4 Rk Iz

16

How to study this course?

17

Before class: scanning through the chapters to learn and
gain feeling about what will be studied

In class: trying your best to understand the contents and
speaking out when you have questions

After class: doing exercises seriously

* Quick check 30 seconds to 5 minutes
* % Easy < 1 hour
* % % Moderate < 3 hours

* KKk Challenging > 3 hours

Personnel

e Instructors
— Zhenjiang Hu, Professor, NIlI/PKU
zhenjianghu@pku.edu.cn
— Haiyan Zhao, Associate Professor, PKU
zhhy@sei.pku.edu.cn
— Yingfei Xiong, Assistant Professor, PKU
xiongyf@pku.edu.cn

e Teaching Assistant:
— gK=MN, zyfo726@pku.edu.cn

18

Information

e Course website:
http://sei.pku.edu.cn/~xiongyf04/DPPL/main.htm

— Syllabus

— News/Announcements
— Lecture Notes (slides)

— Other useful resources

19

Recommendation from a student

20

kmEEF
EFAZSFTEHSRETME ?
EIHE 2 9F - EEEE 24
EFLF 51T EE
SRy BESETAAELKE fj‘
Fm, BRSNS E 18 AEEH

HImiEX : fE LEERVTRISm

HIEFRIEHAETAPL , Types and Programming Languages =, HRS8 | HbLhEE 5 7—
LeE b AR A -RR SRR recursive typingEEI—EHAERNH.

=N FSEEEPLAENFSE | #EANE S MEsERSIIEFIRENRE | B2
HTHTPLAST (A2 BIETRESSIAIRN E585ER.

BRoEEENES S MEERAAEERFES TormalidexambbEET.

SRRSO ITREARESITER « BRI AORS | Nzth2FE . BFEedis b,
@R K

fRiET 2016-12-25 O WiEiFe © WEES < 9F N UG - BEEE - 2

Chapter 1: Introduction

What is a type system?
What type systems are good for?
Type Systems and Programming Languages

21

What is a type system (type theory)?

e Atype system is a tractable syntactic method for proving
the absence of certain (bad) program behaviors by
classifying phrases according to the kinds of values they
compute.

— Tools for program reasoning

— Fully automatic (and efficient)

— Classification of terms

— Static approximation

— Proving the absence rather than presence

22

What is a type system (type theory)?

23

A type system is a tractable syntactic method for proving
the absence of certain (bad) program behaviors by

classifying phrases according to the kinds of values they
compute.

Tractable : be finished In
short time, often

— Classification of terms polynomlal
_ Static approximation Syntactic: be part of the

— Proving the absence rather than pr programming Ianguage

— Tools for program reasoning
— Fully automatic (and efficient)

What is a type system (type theory)?

e Atype system is a tractable syntactic method for proving

24

the absence of certain (bad) program behaviors by

classifying phrases according to the kinds of values they

compute.

— Tools for program reasoning

— Fully automatic (and efficient) True, false
— Classification of terms 1,2,3, ...
— Static approximation a, b, c,

Boolean
Int

. Char

— Proving the absence rather than presence

25

Given a property that correct programs should
satisfy, does this program satisfy it?
Based on Rice’s theorem, we cannot precisely
answer the question on any non-trivial property
Approximation method 1 (type checking): only
determine the program definitely satisfies a property
Approximation method 2 (testing): only determine
the program definitely violates a property
Can you give a correct program that cannot type-
check?

— Static approximation

— Proving the absence rather than presence

What are type systems good for?

26

Detecting Errors

— Many programming errors can be detected early, fixed intermediately and
easily.

Abstraction

— type systems form the backbone of the module languages: an interface
itself can be viewed as “the type of a module.”

Documentation

— The type declarations in procedure headers and module interfaces
constitute a form of (checkable) documentation.

Language Safety
— A safe language is one that protects its own abstractions.
Efficiency

— Removal of dynamic checking; smart code-generation

Type Systems and Languages Design

e Language design should go hand-in-hand with type
system design.

— Languages without type systems tend to offer features that
make typechecking difficult or infeasible.

— Concrete syntax of typed languages tends to be more
complicated than that of untyped languages, since type
annotations must be taken into account.

In typed languages the type system itself is often taken as the
foundation of the design and the organizing principle in light of

which every other aspect of the design is considered.

27

Homework

28

Read Chapters 1 and 2.

Install OCaml and read “Basics”
— http://caml.inria.fr/download.en.html
— http://ocaml.org/learn/tutorials/basics.html

