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About Me
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Research Interest

e Functional Programming
— Calculating Efficient Functional Programs
— ACM ICFP 2011 General Co-Chair
— ACM ICFP Steering Committee Co-Chair (2012-2013)
— AMC Haskell Symposium Steering Committee Member (2014-)

e Algorithmic Languages and Calculi
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About Prof. Zhao

e 2003 : PhD, Univ. of Tokyo
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— Software engineering
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e 2012: Assistant Professor, Peking Univ.
e 2018: Associate Professor, Peking Univ.
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Course Overview




Designing Programming Languages is an Art

e Artvs. Knowledge
— Art cannot be taught, while knowledge can
— What in general people have invented
— How to reason their properties formally

e Why formal reasoning important
— Poorly designed languages widely used
e Java array flaw
e PHP, Javascript, etc.
— Well designed language needs strictly reasoning
e A small set of general, consistent principles
e Devils in details

The three worst programming languages:
https://medium.com/smalltalk-talk/the-three-worst-programming-languages-blec25a232c1#.jdsfib20v
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What i1s this course about?

e Study fundamental (formal) approaches to describing
program behaviors that are both precise and abstract.

— precise so that we can use mathematical tools to formalize and
check interesting properties

— abstract so that properties of interest can be discussed clearly,
without getting bogged down in low-level details
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What you can get out of this course?

e A more sophisticated perspective on programs,
programming languages, and the activity of
programming

— How to view programs and whole languages as formal,
mathematical objects

— How to make and prove rigorous claims about them

— Detailed study of a range of basic language features

e Powerful tools/techniques for language design,
description, and analysis
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This course 1s not about ...

e An introduction to programming

e A course on compiler

e A course on functional programming

e A course on language paradigms/styles

All the above are certainly helpful for your
deep understanding of this course.
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What background is required?

e Basic knowledge on
— Discrete mathematics: sets, functions, relations, orders
— Algorithms: list, tree, graph, stack, queue, heap
— Elementary logics: propositional logic, first-order logic

e Familiar with a programming language and basic
knowledge of compiler construction
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Textbook

e Types and Programming Languages
e {E&: Benjamin Pierce

o HAR%L: The MIT Press

e HAREE: 2002-02-01

o TUZX: 648

o TEAT: USD 72.00

e ZXMNi: Hardcover

e |SBN: 9780262162098
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Grading
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Activity in class / Mid-Term Test: 20%
Homework: 40%

Final (Report/Presentation): 40%
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How to study this course?
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Before class: scanning through the chapters to learn and
gain feeling about what will be studied

In class: trying your best to understand the contents and
speaking out when you have questions

After class: doing exercises seriously

* Quick check 30 seconds to 5 minutes
* % Easy < 1 hour
* % % Moderate < 3 hours

* KKk Challenging > 3 hours




Personnel

e Instructors
— Zhenjiang Hu, Professor, NIlI/PKU
zhenjianghu@pku.edu.cn
— Haiyan Zhao, Associate Professor, PKU
zhhy@sei.pku.edu.cn
— Yingfei Xiong, Assistant Professor, PKU
xiongyf@pku.edu.cn

e Teaching Assistant:
— gK=MN, zyfo726@pku.edu.cn
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Information

e Course website:
http://sei.pku.edu.cn/~xiongyf04/DPPL/main.htm

— Syllabus

— News/Announcements
— Lecture Notes (slides)

— Other useful resources
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Recommendation from a student
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Chapter 1: Introduction

What is a type system?
What type systems are good for?
Type Systems and Programming Languages
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What is a type system (type theory)?

e Atype system is a tractable syntactic method for proving
the absence of certain (bad) program behaviors by
classifying phrases according to the kinds of values they
compute.

— Tools for program reasoning

— Fully automatic (and efficient)

— Classification of terms

— Static approximation

— Proving the absence rather than presence
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What is a type system (type theory)?
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A type system is a tractable syntactic method for proving
the absence of certain (bad) program behaviors by

classifying phrases according to the kinds of values they
compute.

Tractable : be finished In
short time, often

— Classification of terms polynomlal
_ Static approximation Syntactic: be part of the

— Proving the absence rather than pr programming Ianguage

— Tools for program reasoning
— Fully automatic (and efficient)




What is a type system (type theory)?

e Atype system is a tractable syntactic method for proving
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the absence of certain (bad) program behaviors by

classifying phrases according to the kinds of values they

compute.

— Tools for program reasoning

— Fully automatic (and efficient) True, false
— Classification of terms 1,2,3, ...
— Static approximation a, b, c,

Boolean
Int

. Char

— Proving the absence rather than presence
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Given a property that correct programs should
satisfy, does this program satisfy it?
Based on Rice’s theorem, we cannot precisely
answer the question on any non-trivial property
Approximation method 1 (type checking): only
determine the program definitely satisfies a property
Approximation method 2 (testing): only determine
the program definitely violates a property
Can you give a correct program that cannot type-
check?

— Static approximation

— Proving the absence rather than presence




What are type systems good for?
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Detecting Errors

— Many programming errors can be detected early, fixed intermediately and
easily.

Abstraction

— type systems form the backbone of the module languages: an interface
itself can be viewed as “the type of a module.”

Documentation

— The type declarations in procedure headers and module interfaces
constitute a form of (checkable) documentation.

Language Safety
— A safe language is one that protects its own abstractions.
Efficiency

— Removal of dynamic checking; smart code-generation




Type Systems and Languages Design

e Language design should go hand-in-hand with type
system design.

— Languages without type systems tend to offer features that
make typechecking difficult or infeasible.

— Concrete syntax of typed languages tends to be more
complicated than that of untyped languages, since type
annotations must be taken into account.

In typed languages the type system itself is often taken as the
foundation of the design and the organizing principle in light of

which every other aspect of the design is considered.
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Homework
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Read Chapters 1 and 2.

Install OCaml and read “Basics”
— http://caml.inria.fr/download.en.html
— http://ocaml.org/learn/tutorials/basics.html




