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Structure of arith

Scan tokes 
(lexer.mll)

Parse terms 
(parser.mly)

Evaluate 
each terms 

(eval in 
core.ml)

Print the 
values 

(printtm in 
syntax.ml)
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Main.ml drives the whole process.

Syntax.ml defines the terms.



Syntax.ml
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Info: a data type recording the position of the term in the 
source file



eval in core.ml
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eval1: perform a single step reduction



Commands

• Each line of the source file is parsed as a command
• type command =  | Eval of info * term 
• New commands will be added later

• Main routine for each file
let process_file f  =
alreadyImported := f :: !alreadyImported;
let cmds = parseFile f in
let g  c =  
open_hvbox 0;
let results = process_command c in
print_flush();
results

in
List.iter g  cmds
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Exercise arith.simple_use

• Using arith to write the following equation
• Return five if two is zero, otherwise return nine

• Hint: read the code in parser.mly
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Exercise arith.size

• Make the evaluation computes the size of a term 
(3.3.2) instead of reducing the term, and test it on 
the original test.f
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• Hint: 
• pr: string->unit prints a 

string to the screen
• string_of_int : int->string 

converts an integer into a 
string

• Remember to change 
both .ml and .mli files

• Some abbreviations
• UCID = upper case identifier
• LCID = lower case identifier
• ty = type
• tm = term
• LCURLY = “{“
• RCURLY = “}”
• USCORE = “_”



Exercise arith.big-step

• Change the evaluation to use big-step semantics, 
and compare the results with small-step semantics 
on the following expressions
• true;
• if false then true else false;
• if 0 then 1 else 2;
• if true then (succ false) else 2;
• 0; 
• succ (pred 0);
• iszero (pred (succ (succ 0))); 

• What does the comparison reveal?
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Big-step vs small-step

• Big-step is usually easier to understand
• called “natural semantics” in some articles

• Big-step often leads to simpler proof

• Big-step cannot describe computations that do not 
produce a value
• Non-terminating computation

• “Stuck” computation
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fullsimple

• Implement all extensions in Chapter 11

• Allow different types of command:
• Evaluation: type-checking and reducing a term
• Bindings

• Variable binding: a:Int;
• Type variable binding: T;
• Term abbreviation binding: t = succ 0;
• Type abbreviation binding: T = Nat -> Nat;

• Types can be used without declaration (uninterpreted
types)

x:X
(lambda a:X. a) x
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Review: nameless 
representation
• What is the nameless representation of the 

following term?
• 𝜆𝑥. 𝑥 (𝜆𝑦. 𝑥 𝑦)

• 𝜆. 0 (𝜆. 1 0)
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fullsimple, terms

type term =

TmVar of info * int * int

| TmAbs of info * string * ty * term

| TmApp of info * term * term

| ..

• Using nameless representation of terms

• The second int for TmVar is used for debugging
• = the number of items in the context

• The “string” in TmAbs is used for printing
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Example: printing terms

and printtm_ATerm outer ctx t = match t with

| TmVar(fi,x,n) ->

if ctxlength ctx = n then

pr (index2name fi ctx x)

else

pr ("[bad index: " ^ …

| TmAbs(fi,x,tyT1,t2) ->

(let (ctx',x') = (pickfreshname ctx x) in

obox(); pr "lambda ";

pr x'; pr ":"; printty_Type false ctx tyT1; pr "."; …

printtm_Term outer ctx' t2; …
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Review: context

• What contexts are used in our 
course?
• Mapping names to integers in 

nameless representation
• Σ: mapping variables to types

• Can be combined into one

• New contexts in the 
implementation
• Type variable binding: marking 

type variables
• Term abbreviation binding: 

Mapping variables to terms 
(and their types)

• Type abbreviation binding: 
Mapping type variables to 
terms

• All can be combined into one
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type binding =
NameBind

| TyVarBind
| VarBind of ty
| TmAbbBind of term * (ty option)
| TyAbbBind of ty

type context = (string * binding) list

Only used in 
printing as a 
placeholder

Queried by 
index



Auxiliary functions for 
nameless representation 
• name2index

• info->context
->string->int

• return the index of a name

• index2name
• info->context

->int->string
• inverse of the above

• pickfreshname
• context->string

->(context, string)
• generate a fresh name 

using the second 
parameter as hint
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type binding =
NameBind

| TyVarBind
| VarBind of ty
| TmAbbBind of term * (ty option)
| TyAbbBind of ty

type context = (string * binding) list



Exercise for fullsimple.rec_fix

• Define plus using fix and test the following 
expressions
• plus 10 105;

• plus 0 1;

• plus 0 0;

• plus 2 0;
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Exercise fullsimple.nameless

• Construct a term t that is evaluated a term t’ in 
fullsimple, where t’ is different from t via only 
alpha-renaming (i.e., no beta-reduction)
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Exercise fullsimple.natlist

• Try the following term in fullsimple and explain why 
it cannot be typed

NatList = <nil:Unit, cons:{Nat,NatList}>;

nil = <nil=unit> as NatList;      

cons = lambda n:Nat. lambda l:NatList. <cons={n,l}> as 
NatList;
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Exercise fullref.rec_no_fix

• Write plus without using fix or letrec in fullref
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Exercise fullsimple.match

• Add pattern matching for tuples, and test on the 
following expressions
• let {x, y, z} = {true, 1, {2}} in z;
• let {x, y, z} = {true, 1, {2}} in (lambda x:Nat. x) y;
• let {x, y, z} = let x = 1 in {true, x, {2}} in z;
• lambda x:Nat. let {x, y} = {true, 1} in x;
• let x = 0 in let {y, z} = {1, 2} in x;
• let {y, z} = {1, 2} in let y = 3 in y; 

• Part of the code is already provided to you in the 
following two pages
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Partial code for 
fullsimple.match
• Adding the following line to “type term =“ in syntax.ml

• | TmPLet of info * string list * term * term

• Adding the following lines after line 235 in parser.mly
• | LET Pattern EQ Term IN Term

• { fun ctx -> TmPLet($1, $2, $4 ctx, $6 (List.fold_left (fun x y 
-> addname x y) ctx $2)) }

• Pattern :

• LCURLY MetaVars RCURLY

• { $2 }

• | LCURLY RCURLY

• { [] }

• Add the following line to tminfo in syntax.ml
• | TmPLet(fi,_,_,_) -> fi
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Partial code for 
fullsimple.match
• Adding the following lines to “printtm_Term” in syntax.ml

• | TmPLet(fi, xs, t1, t2) ->
• obox0();
• pr "let {";
• let rec print xs =
• match xs with
• x::x'::rest -> pr x; pr ","; print (x'::rest);
• | x::[] -> pr x;
• | [] -> pr ""; in
• print xs;
• pr "} = "; 
• printtm_Term false ctx t1;
• print_space(); pr "in"; print_space();
• let ctx' = List.fold_left (fun ctx x -> addname ctx x) ctx xs in 
• printtm_Term false ctx' t2;
• cbox()
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Homework

• Please use the associated code to finish the exercises

• If an exercise asks for a program in the defined language, submit 
the program.

• If an exercise asks for modifying the interpreter
• Submit all code
• Your submission should contain file test.f which contains the 

expressions required by the exercise
• TA will perform the following two commands to verify your submission:

• make
• ./f test.f

• Please submit a compressed file where each problem in a 
separate folder

• You do not need to hand in fullsimple.nameless and 
fullsimple.natlist
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