
Design Principles of Programming Languages

Practice

Zhenjiang Hu, Haiyan Zhao, Yingfei Xiong

Peking University, Spring Term

arith, fullsimple, fullref

Structure of arith

Scan tokes
(lexer.mll)

Parse terms
(parser.mly)

Evaluate
each terms

(eval in
core.ml)

Print the
values

(printtm in
syntax.ml)

2

Main.ml drives the whole process.

Syntax.ml defines the terms.

Syntax.ml

3

Info: a data type recording the position of the term in the
source file

eval in core.ml

4

eval1: perform a single step reduction

Commands

• Each line of the source file is parsed as a command
• type command = | Eval of info * term
• New commands will be added later

• Main routine for each file
let process_file f =
alreadyImported := f :: !alreadyImported;
let cmds = parseFile f in
let g c =
open_hvbox 0;
let results = process_command c in
print_flush();
results

in
List.iter g cmds

5

Exercise arith.simple_use

• Using arith to write the following equation
• Return five if two is zero, otherwise return nine

• Hint: read the code in parser.mly

6

Exercise arith.size

• Make the evaluation computes the size of a term
(3.3.2) instead of reducing the term, and test it on
the original test.f

7

• Hint:
• pr: string->unit prints a

string to the screen
• string_of_int : int->string

converts an integer into a
string

• Remember to change
both .ml and .mli files

• Some abbreviations
• UCID = upper case identifier
• LCID = lower case identifier
• ty = type
• tm = term
• LCURLY = “{“
• RCURLY = “}”
• USCORE = “_”

Exercise arith.big-step

• Change the evaluation to use big-step semantics,
and compare the results with small-step semantics
on the following expressions
• true;
• if false then true else false;
• if 0 then 1 else 2;
• if true then (succ false) else 2;
• 0;
• succ (pred 0);
• iszero (pred (succ (succ 0)));

• What does the comparison reveal?

8

Big-step vs small-step

• Big-step is usually easier to understand
• called “natural semantics” in some articles

• Big-step often leads to simpler proof

• Big-step cannot describe computations that do not
produce a value
• Non-terminating computation

• “Stuck” computation

9

fullsimple

• Implement all extensions in Chapter 11

• Allow different types of command:
• Evaluation: type-checking and reducing a term
• Bindings

• Variable binding: a:Int;
• Type variable binding: T;
• Term abbreviation binding: t = succ 0;
• Type abbreviation binding: T = Nat -> Nat;

• Types can be used without declaration (uninterpreted
types)

x:X
(lambda a:X. a) x

10

Review: nameless
representation
• What is the nameless representation of the

following term?
• 𝜆𝑥. 𝑥 (𝜆𝑦. 𝑥 𝑦)

• 𝜆. 0 (𝜆. 1 0)

11

fullsimple, terms

type term =

TmVar of info * int * int

| TmAbs of info * string * ty * term

| TmApp of info * term * term

| ..

• Using nameless representation of terms

• The second int for TmVar is used for debugging
• = the number of items in the context

• The “string” in TmAbs is used for printing

12

Example: printing terms

and printtm_ATerm outer ctx t = match t with

| TmVar(fi,x,n) ->

if ctxlength ctx = n then

pr (index2name fi ctx x)

else

pr ("[bad index: " ^ …

| TmAbs(fi,x,tyT1,t2) ->

(let (ctx',x') = (pickfreshname ctx x) in

obox(); pr "lambda ";

pr x'; pr ":"; printty_Type false ctx tyT1; pr "."; …

printtm_Term outer ctx' t2; …

13

Review: context

• What contexts are used in our
course?
• Mapping names to integers in

nameless representation
• Σ: mapping variables to types

• Can be combined into one

• New contexts in the
implementation
• Type variable binding: marking

type variables
• Term abbreviation binding:

Mapping variables to terms
(and their types)

• Type abbreviation binding:
Mapping type variables to
terms

• All can be combined into one

14

type binding =
NameBind

| TyVarBind
| VarBind of ty
| TmAbbBind of term * (ty option)
| TyAbbBind of ty

type context = (string * binding) list

Only used in
printing as a
placeholder

Queried by
index

Auxiliary functions for
nameless representation
• name2index

• info->context
->string->int

• return the index of a name

• index2name
• info->context

->int->string
• inverse of the above

• pickfreshname
• context->string

->(context, string)
• generate a fresh name

using the second
parameter as hint

15

type binding =
NameBind

| TyVarBind
| VarBind of ty
| TmAbbBind of term * (ty option)
| TyAbbBind of ty

type context = (string * binding) list

Exercise for fullsimple.rec_fix

• Define plus using fix and test the following
expressions
• plus 10 105;

• plus 0 1;

• plus 0 0;

• plus 2 0;

16

Exercise fullsimple.nameless

• Construct a term t that is evaluated a term t’ in
fullsimple, where t’ is different from t via only
alpha-renaming (i.e., no beta-reduction)

17

Exercise fullsimple.natlist

• Try the following term in fullsimple and explain why
it cannot be typed

NatList = <nil:Unit, cons:{Nat,NatList}>;

nil = <nil=unit> as NatList;

cons = lambda n:Nat. lambda l:NatList. <cons={n,l}> as
NatList;

18

Exercise fullref.rec_no_fix

• Write plus without using fix or letrec in fullref

19

Exercise fullsimple.match

• Add pattern matching for tuples, and test on the
following expressions
• let {x, y, z} = {true, 1, {2}} in z;
• let {x, y, z} = {true, 1, {2}} in (lambda x:Nat. x) y;
• let {x, y, z} = let x = 1 in {true, x, {2}} in z;
• lambda x:Nat. let {x, y} = {true, 1} in x;
• let x = 0 in let {y, z} = {1, 2} in x;
• let {y, z} = {1, 2} in let y = 3 in y;

• Part of the code is already provided to you in the
following two pages

20

Partial code for
fullsimple.match
• Adding the following line to “type term =“ in syntax.ml

• | TmPLet of info * string list * term * term

• Adding the following lines after line 235 in parser.mly
• | LET Pattern EQ Term IN Term

• { fun ctx -> TmPLet($1, $2, $4 ctx, $6 (List.fold_left (fun x y
-> addname x y) ctx $2)) }

• Pattern :

• LCURLY MetaVars RCURLY

• { $2 }

• | LCURLY RCURLY

• { [] }

• Add the following line to tminfo in syntax.ml
• | TmPLet(fi,_,_,_) -> fi

21

Partial code for
fullsimple.match
• Adding the following lines to “printtm_Term” in syntax.ml

• | TmPLet(fi, xs, t1, t2) ->
• obox0();
• pr "let {";
• let rec print xs =
• match xs with
• x::x'::rest -> pr x; pr ","; print (x'::rest);
• | x::[] -> pr x;
• | [] -> pr ""; in
• print xs;
• pr "} = ";
• printtm_Term false ctx t1;
• print_space(); pr "in"; print_space();
• let ctx' = List.fold_left (fun ctx x -> addname ctx x) ctx xs in
• printtm_Term false ctx' t2;
• cbox()

22

Homework

• Please use the associated code to finish the exercises

• If an exercise asks for a program in the defined language, submit
the program.

• If an exercise asks for modifying the interpreter
• Submit all code
• Your submission should contain file test.f which contains the

expressions required by the exercise
• TA will perform the following two commands to verify your submission:

• make
• ./f test.f

• Please submit a compressed file where each problem in a
separate folder

• You do not need to hand in fullsimple.nameless and
fullsimple.natlist

23

