
编程语言的设计原理
Design Principles of

Programming Languages

Zhenjiang Hu, Yingfei Xiong, Haiyan Zhao,
胡振江 熊英飞 赵海燕
Peking University, Spring, 2021

Chapter 0+: Implementation

1. A quick tour of OCaml
2. Utilities in Ocaml system
3. An Implementation for Arithmetic

Expression

A Quick Tour of OCaml

Part I

Resources

• Overview
– http://ocaml.org/learn/tutorials/basics.html

• Tutorials
– http://ocaml.org/learn/tutorials/

• Download
– http://caml.inria.fr/download.en.html

2021/3/17 Design Principle of Programming Language 4

http://ocaml.org/learn/tutorials/
http://caml.inria.fr/download.en.html

Why OCaml?
What we learn in this course, is mostly conceptual and
mathematical. However:

– Some of the ideas are easier to grasp if you can see
them work;

– Experimenting with small implementations of
programming languages is an excellent way to
deepen intuitions.

OCaml language is chosen for these purposes
– General programming language with an emphasis

on expressiveness and safety.

2021/3/17 Design Principle of Programming Language 5

OCaml used in the Course
Concentrates just on the “core” of the language, ignoring
most of its features, like modules or objects. For
– some of the ideas in the course are easier to grasp if

you can “see them work”
– experimenting with small implementations of

programming languages is an excellent way to deepen
intuitions

2021/3/17 Design Principle of Programming Language 6

Quick fact sheet
• Some facts about Caml (Categorical Abstract

Machine Language /meta-language)
– Created in 1987 by INRIA - France’s national

research institute for computer science (Haskell 1.0
is from 1990)

– Originated from ML(Meta-Language) but was
intended for in house projects of INRIA

– Short timeline:
Caml (1987)  Caml Light (1990)  OCaml (1995)

– Currently at version 4.12.0 (released on 2021-02-24)

2021/3/17 Design Principle of Programming Language 7

OCaml
A large and powerful language (safety and reliability)

– the most popular variant of the Caml language
• Collaborative Application Markup Language ? (协作应用程

序标记语言)
– extending the core Caml language with

• a fully-fledged object-oriented layer
• powerful module system
• a sound, polymorphic type system featuring type inference

– a functional programming language
• i.e., a language in which the functional programming style

is the dominant idiom

OCaml system is open source software
2021/3/17 Design Principle of Programming Language 8

http://caml.inria.fr/about/index.en.html

Functional Programming
Functional style can be described as a combination of

– persistent data structures (which, once built, are never
changed)

– recursion as a primary control structure
– heavy use of higher-order functions (take functions as values,

can be used as arguments and/or return functions as results)
– ……

Imperative languages, by contrast, emphasize
– mutable data structures
– looping rather than recursion
– first-order rather than higher-order programming (though

many object-oriented design patterns involve higher-order
idioms — e.g., Subscribe/Notify, Visitor, etc.

– …….
2021/3/17 Design Principle of Programming Language 9

The Top Level
Ocaml, as most functional programming implementation,
provides both

– an interactive top level ,
and

– a compiler that produces standard executable
binaries.

The top level provides a convenient way of experimenting
with small programs.

2021/3/17 Design Principle of Programming Language 10

The Top Level
The mode of interacting with the top level is

typing in a series of expressions;
Ocaml

– evaluates them as they are typed, and
– displays the results (and their types)

In the interaction ,
– lines beginning with # are inputs
– lines beginning with - are the system’s responses.

Note that inputs are always terminated by a
double semicolon ;;

2021/3/17 Design Principle of Programming Language 11

Expressions
OCaml is an expression language
A program is an expression
The “meaning” of program is the value of the expression

16 + 18;;
- : int = 34

2*8 + 3*6;;
- : int = 34

Every expression has exactly one type (no pure command,
even assignment, unit)
When an expression is evaluated, one of 4 things may happen:

1. evaluate to a value of the same type as the expression
2. raise an exception (discussed later)
3. not terminate
4. exit

2021/3/17 Design Principle of Programming Language 12

Expressions

What will happen?

if 1 < 2 then 1 else 1.6;;

if 1 < 2 then 1 else 1.6;;
^^^

Error: This expression has type float but an expression was
expected of type int

In general, the compiler doesn’t try to figure out the value of the
test during type checking
Instead, it requires that both branches of the conditional have the
same type (no matter how the test turns out).

2021/3/17 Design Principle of Programming Language 13

Basic types
Include: unit, int, char, float, bool, and string
– char: ‘a’, ‘\120’ (decimal, ‘x’)
– string : a built-in type, unlike C, “hello” , “”, s.[i]
– bool : logical operators && , || are short-circuit version

Strongly typed language (not like the weakly-typed C)
– Every expression must have a type, and expressions of one

type may not be used as expressions in another type
– There are no implicit coercions (casting) between types in

Ocaml !!
• int_of_float, float_of_Int, …….

2021/3/17 Design Principle of Programming Language 14

Basic types
Ocaml type Range
int 31-bit signed int (roughly +/- 1 billion) on 32-bit

processors, or 63-bit signed int on 64-bit processors

float IEEE double-precision floating point, equivalent to
C's double

bool A boolean, written either true or false
char An 8-bit character. Not support Unicode or UTF-8, a

serious flaw in Ocaml
string A string. Strings are not just lists of characters, they

have their own, more efficient internal
representation

unit Written as ()

2021/3/17 Design Principle of Programming Language 15

Type boolean
There are only two values of type bool: true and false
Comparison operations return boolean values

1 = 2;;
- : bool = false

4 >= 3;;
- : bool = true

not is a unary operation on booleans
not (5 <= 10);;
- : bool = false
not (2 = 2);;
- : bool = false

2021/3/17 Design Principle of Programming Language 16

Conditional expressions
The result of the conditional expression

if B then E1 else E2
is either the result of E1 or that of E2, depending on
whether the result of B is true or false

if 3 < 4 then 7 else 100;;
- : int = 7
if 3 < 4 then (3 + 3) else (10 * 10);;
- : int = 6
if false then (3 + 3) else (10 * 10);;
- : int = 100
if false then false else true;;
- : bool = true

2021/3/17 Design Principle of Programming Language 17

Giving things names
The let construct gives a name to the result (value) of an
expression so that it can be used later

let name = expr

let inchesPerMile = 12*3*1760;;
val inchesPerMile : int = 63360

let x = 1000000 / inchesPerMile;;
val x : int = 15

Variables are names for values
Names may contain letters (upper & lower case), digits, _, and
the ’, and must begin with a lowercase letter or underscore

2021/3/17 Design Principle of Programming Language 18

Giving things names
Definition using let can be nested using the in form.

let name = expr1 in expr2
expr2 is called the body of let, name is defined as the
value of expr1 within the body

let x = 1 in
let x = 2 in
let y = x + x in

x + y ;;
- : int = 6

The scope of x?

2021/3/17 Design Principle of Programming Language 19

Giving things names

- : int = 1

let x = 1;;
val x : int =1
let z =

let x = 2 in
let x = x + x in

x + x ;;
val z : int = 8
x;;

Binding is static: if there is more than one definition for a variable,
the value of the variable is defined by the most recent let
definition for it
The variable is bound only in the body of let

2021/3/17 Design Principle of Programming Language 20

Functions
let cube (x: int) = x*x*x;;
val cube : int -> int = <fun>
cube 9;;
- : int = 729

We call

– x the parameter of the function cube;
– the expression x*x*x is its body.

The expression cube 9 is an application of cube to the
argument 9. (How about C/C++?)

2021/3/17 Design Principle of Programming Language 21

Functions
let cube (x: int) = x*x*x;;
val cube : int -> int = <fun>
cube 9;;
- : int = 729

Here, int->int (pronounced “int arrow int”) indicates that
cube is a function that should be applied to an integer
argument and that returns an integer
Note that OCaml responds to a function declaration by
printing just <fun> as the function’s value.
The precedence of function application is higher than
most operators

2021/3/17 Design Principle of Programming Language 22

Functions
A function with two parameters:

The type printed for sumsq is int->int->int, indicating that it
should be applied to two integer arguments and yields an
integer as its result.
Note that the syntax for invoking function declarations in OCaml
is slightly different from languages in the C/C++/Java family:
use cube 3 and sumsq 3 4 rather than cube(3) and sumsq(3, 4),
since multiple-parameter functions are implemented as nested
functions (called Currying)

let sumsq (x: int) (y: int) = x*x + y*y;;
val sumsq : int -> int -> int = <fun>

sumsq 3 4;;
- : int = 25

2021/3/17 Design Principle of Programming Language 23

Recursive functions
We can translate inductive definitions directly into
recursive functions

let rec sum(n:int) = if n = 0 then 0 else n + sum(n-1);;
val sum : int -> int = <fun>
sum 6;;
- : int = 21

let rec fact(n:int) = if n = 0 then 1 else n * fact(n-1);;
val fact : int -> int = <fun>
fact 6;;
- : int = 720

rec after let tells Ocaml that this is a recursive function —
one that needs to refer to itself in its own body
What will happen if dropping the rec ?

2021/3/17 Design Principle of Programming Language 24

Recursive functions
let rec power k x = if k = 0 then 1.0 else x *. (power (k-1) x) ;;
val power : int -> float -> float = <fun>
power 5 2.0; ;
-: float = 32

let b_power k x = (float_of_int k) *. x;;
val b_power : int -> float -> float = <fun>
let b_power k x = if k = 0 then 1.0 else x *. (b_power (k-1) x) ;;
val b_power : int -> float -> float = <fun>
b_power 5 2.0; ;

-: float = ?

-: float = 16
2021/3/17 Design Principle of Programming Language 25

Recursive functions: Making change
Another example of recursion on integer arguments:
Suppose a bank has an “infinite” supply of coins (pennies,
nickles, dimes, and quarters, and silver dollars), and it has to
give a customer a certain sum
How many ways are there of doing this?

For example, there are 4 ways of making change for 12 cents:
– 12 pennies
– 1 nickle and 7 pennies
– 2 nickles and 2 pennies
– 1 dime and 2 pennies

We want to write a function change that, when applied to 12,
returns 4

2021/3/17 Design Principle of Programming Language 26

Recursive functions: Making change
Let’s first consider a simplified variant of the problem
where the bank only has one kind of coin: pennies
In this case, there is only one way to make change for a
given amount: pay the whole sum in pennies!

(* No. of ways of paying a in pennies *)
let rec changeP (a: int) = 1;;

That wasn’t very hard

Note: Comments starts with (* and end with *)

2021/3/17 Design Principle of Programming Language 27

Recursive functions: Making change
Now suppose the bank has both nickels and pennies
If a is less than 5 then we can only pay with pennies; if not,
we can do one of two things:
– pay in pennies; we already know how to do this
– pay with at least one nickel: the number of ways of doing

this is the number of ways of making change (with nickels
and pennies) for a-5

(* number of ways of paying in pennies and nickels *)
let rec changePN (a:int) =

if a < 5 then changeP a
else changeP a + changePN (a-5);

2021/3/17 Design Principle of Programming Language 28

Recursive functions: Making change
Continuing the idea for dimes and quarters:

(* ... pennies, nickels, dimes *)
let rec changePND (a:int) =

if a < 10 then changePN a
else changePN a + changePND (a-10);;

(* ... pennies, nickels, dimes, quarters *)
let rec changePNDQ (a:int) =

if a < 25 then changePND a
else changePND a + changePNDQ (a-25);;

2021/3/17 Design Principle of Programming Language 29

Recursive functions: Making change

(* Pennies, nickels, dimes, quarters, dollars *)
let rec change (a:int) =

if a < 100 then changePNDQ a
else changePNDQ a + change (a-100);;

2021/3/17 Design Principle of Programming Language 30

Recursive functions: Making change
Some tests:
change 5;;
- : int = 2
change 9;;
- : int = 2
change 10;;
- : int = 4
change 29;;
- : int = 13
change 30;;
- : int = 18
change 100;;
- : int = 243
change 499;;
- : int = 33995

2021/3/17 Design Principle of Programming Language 31

Aggregate types
OCaml provides a rich set of aggregate types for storing
a collection of data values, including

– lists
– tuples
– disjoint union (also called tagged unions, or variant

records)
– records
– arrays

2021/3/17 Design Principle of Programming Language 32

Lists
One handy structure for storing a collection of data values is
a list
– provided as a built-in type in OCaml and a number of other

popular languages (e.g., Lisp, Scheme, and Prolog—but not,
unfortunately, Java), used extensively in FP programs

– a sequence of values of the same type
– built in OCaml by writing out its elements, enclosed in

square brackets and separated by semicolons

[1; 3; 2; 5];;
- : int list = [1; 3; 2; 5]

The type printed for this list is pronounced either “integer
list” or “list of integers”.

The empty list, written [], is sometimes called “nil”
2021/3/17 Design Principle of Programming Language 33

Lists are homogeneous

OCaml does not allow different types of elements to be
mixed within the same list:

[1; 2; "dog"];;
Characters 7-13: Error: This expression has type string
but an expression was expected of type int

2021/3/17 Design Principle of Programming Language 34

Constructing Lists
• OCaml provides a number of built-in operations that return lists
• The most basic one creates a new list by adding an element to

the front of an existing list
– written as :: and pronounced “cons” (for it constructs lists)
1 :: [2; 3];;
- : int list = [1; 2; 3]

let add123 (l: int list) = 1 :: 2 :: 3 :: l;;
val add123 : int list -> int list = <fun>

add123 [5; 6; 7];;
- : int list = [1; 2; 3; 5; 6; 7]

add123 [];;
- : int list = [1; 2; 3]

2021/3/17 Design Principle of Programming Language 35

Constructing Lists
Any list can be built by “consing” its elements together:

In fact, [e1; e2; . . . ; en] is simply a shorthand for
e1 :: e2 :: . . . :: en :: []

Note that, when omitting parentheses from an
expression involving several uses of ::, we associate to
the right

– i.e., 1::2::3::[] means the same thing as 1::(2::(3::[]))
– By contrast, arithmetic operators like + and - associate to the

left: 1-2-3-4 means ((1-2)-3)-4

1 :: 2 :: 3 :: 2 :: 1 :: [] ;;;
: int list = [1; 2; 3; 2; 1]

2021/3/17 Design Principle of Programming Language 36

Taking Lists Apart
OCaml provides two basic operations for extracting the
parts of a list (i.e., deconstruction)
– List.hd (pronounced “head”) returns the first element

of a list.
List.hd [1; 2; 3];;
- : int = 1

– List.tl (pronounced “tail”) returns everything but the
first element.

List.tl [1; 2; 3];;
- : int list = [2; 3]

2021/3/17 Design Principle of Programming Language 37

More list examples

List.tl (List.tl [1; 2; 3]);;
- : int list = [3]

List.tl (List.tl (List.tl [1; 2; 3]));;
- : int list = []

List.hd (List.tl (List.tl [1; 2; 3]));;
- : int = 3

2021/3/17 Design Principle of Programming Language 38

Recursion on lists
Lots of useful functions on lists can be written using
recursion

– Here’s one that sums the elements of a list of numbers:

let rec listSum (l: int list) =
if l = [] then 0
else List.hd l + listSum (List.tl l);;

val listSum : int list -> int = <fun>

listSum [5; 4; 3; 2; 1];;
- : int = 15

2021/3/17 Design Principle of Programming Language 39

Consing on the right
let rec snoc (l: int list) (x: int) =

if l = [] then x::[]
else List.hd l :: snoc(List.tl l) x;;

val snoc : int list -> int -> int list = <fun>

snoc [5; 4; 3; 2] 1;;
- : int list = [5; 4; 3; 2; 1]

2021/3/17 Design Principle of Programming Language 40

A better rev
(* Adds the elements of l to res in reverse order *)
let rec revaux (l: int list) (res: int list) =

if l = [] then res
else revaux (List.tl l) (List.hd l :: res);;

val revaux : int list -> int list -> int list = <fun>

revaux [1; 2; 3] [4; 5; 6];;
- : int list = [3; 2; 1; 4; 5; 6]

let rev (l: int list) = revaux l [];;
val rev : int list -> int list = <fun>

2021/3/17 Design Principle of Programming Language 41

Tail recursion
It is usually fairly easy to rewrite a recursive function in tail-
recursive style

– e.g., the usual factorial function is not tail recursive, because
one multiplication remains to be done after the recursive call
returns:
let rec fact (n: int) =

if n = 0 then 1
else n * fact(n-1);;

It can be transformed into a tail-recursive version by performing the
multiplication before the recursive call and passing along a separate
argument in which these multiplications “accumulate”:

let rec factaux (acc:int) (n:int) =
if n = 0 then acc
else factaux (acc*n) (n-1);;

let fact (n:int) = factaux 1 n;;

2021/3/17 Design Principle of Programming Language 42

Basic Pattern Matching
Recursive functions on lists tend to have a standard shape:

– test whether the list is empty, and if it is not
– do something involving the head element and the tail

let rec listSum (l:int list) =
if l = [] then 0
else List.hd l + listSum (List.tl l);;

OCaml provides a convenient pattern-matching construct that
bundles the emptiness test and the extraction of the head
and tail into a single syntactic form:

let rec listSum (l: int list) =
match l with

[] -> 0
| x::y -> x + listSum y;;

2021/3/17 Design Principle of Programming Language 43

Basic Pattern Matching
Pattern matching can be used with types other than lists,
like other aggregate types, and even simple types
For example, here it is used on integers:

let rec fact (n:int) =
match n with

0 -> 1
| _ -> n * fact(n-1);;

here _ pattern is a wildcard that matches any value

2021/3/17 Design Principle of Programming Language 44

Complex Patterns
The basic elements (constants, variable binders, wildcards,
[], ::, etc.) may be combined in arbitrarily complex ways in
match expressions:

let silly l =
match l with

[_; _; _] -> "three elements long"
| _::x::y::_::_::rest -> if x > y then "foo" else "bar"
| _ -> "dunno";;

val silly : ‘a list -> string = <fun>
silly [1; 2; 3];;
- : string = "three elements long"
silly [1; 2; 3; 4];;
- : string = "dunno"
silly [1; 2; 3; 4; 5];;
- : string = "bar"

2021/3/17 Design Principle of Programming Language 45

Type Inference
One pleasant feature of OCaml is its powerful

type inference mechanism
that allows the compiler to calculate the types of
variables from the way in which they are used

The compiler can tell that fact takes an integer argument
because n is used as an argument to the integer * and -
functions.

let rec fact n =
match n with

0 -> 1
| _ -> n * fact (n - 1);;

val fact : int -> int = <fun>

2021/3/17 Design Principle of Programming Language 46

Type Inference
Similarly:

let rec listSum l =
match l with

[] -> 0
| x::y -> x + listSum y;;

val listSum : int list -> int = <fun>

2021/3/17 Design Principle of Programming Language 47

Polymorphism (first taste)

• The ’a in the type of length, pronounced “alpha,” is a
type variable standing for an arbitrary type.

• The inferred type tells us that the function can take a
list with elements of any type (i.e., a list with elements
of type alpha, for any choice of alpha).

let rec length l =
match l with

[] -> 0
| _::y -> 1 + length y;;

val length : ’a list -> int = <fun>

2021/3/17 Design Principle of Programming Language 48

Tuples
Items connected by commas are “tuples.” (The enclosing
parenthesis are optional)

"age", 38;;
- : string * int = "age", 38

"professor", "age", 33;;
- : string * string * int = "professor", "age", 33

("children", ["bob";"ted";"alice"]);;
- : string * string list = "children", ["bob"; "ted"; "alice"]

let g (x, y) = x * y;;
val g : int * int -> int = <fun>

2021/3/17 Design Principle of Programming Language 49

Tuples are not lists
Do not confuse them!

let tuple = "cow", "dog", "sheep";;
val tuple : string * string * string = "cow", "dog", "sheep"

List.hd tuple;;
Error: This expression has type string * string * string

but an expression was expected of type 'a list

let tup2 = 1, "cow";;
val tup2 : int * string = 1, "cow"

let l2 = [1; "cow"];;
Error: This expression has type string but an expression was
expected of type int

2021/3/17 Design Principle of Programming Language 50

Tuples and pattern matching
Tuples can be “deconstructed” by pattern matching, like list:

let lastName name =
match name with

(n, _, _) -> n;;

lastName (“Zhao", “Haiyan", “PKU");;
- : string = “Zhao"

2021/3/17 Design Principle of Programming Language 51

Example: Finding words **
Suppose we want to take a list of characters and return a
list of lists of characters, where each element of the final
list is a “word” from the original list

split [’t’;’h’;’e’;’ ’;’b’;’r’;’o’;’w’;’n’; ’ ’;’d’;’o’;’g’];;
- : char list list = [[’t’; ’h’; ’e’]; [’b’; ’r’; ’o’; ’w’; ’n’];

[’d’; ’o’; ’g’]]

(Character constants are written with single quotes)

2021/3/17 Design Principle of Programming Language 52

An implementation of split

Note the use of both tuple patterns and nested patterns
The @ operator is shorthand for List.append

let rec loop w l =
match l with

[] -> [w]
| (’ ’::ls) -> w :: (loop [] ls)
| (c::ls) -> loop (w @ [c]) ls;;

val loop : char list -> char list -> char list list = <fun>

let split l = loop [] l;;
val split : char list -> char list list = <fun>

2021/3/17 Design Principle of Programming Language 53

Aside: Local function definitions
The loop function is completely local to split:
there is no reason for anybody else to use it — or even for anybody
else to be able to see it!
It is good style in OCaml to write such definitions as local bindings:

let split l =
let rec loop w l =

match l with
[] -> [w]

| (’ ’::ls) -> w :: (loop [] ls)
| (c::ls) -> loop (w@[c]) ls

in loop [] l;;

2021/3/17 Design Principle of Programming Language 54

Local function definitions
In general, any let definition that can appear at the top
level

let ... ;;
e;;

let ... in e;;

can also appear in a let ... in ... form

2021/3/17 Design Principle of Programming Language 55

A Better Split ?
Our split function worked fine for the examples we tried it
on so far. But here are some other tests:

split [’a’; ’ ’; ’ ’; ’b’];;
- : char list list = [[’a’]; []; [’b’]]

split [’a’; ’ ’];;
- : char list list = [[’a’]; []]

Could we refine split so that it would leave out these
spurious empty lists in the result?

2021/3/17 Design Principle of Programming Language 56

A Better Split
Sure. First rewrite the pattern match a little (without
changing its behavior)

let split l =
let rec loop w l =

match w, l with
_, [] -> [w]

| _, (’ ’::ls) -> w :: (loop [] ls)
| _, (c::ls) -> loop (w@[c]) ls

in loop [] l;;

2021/3/17 Design Principle of Programming Language 57

A Better Split
Then add a couple of clauses:
let better_split l =

let rec loop w l =
match w, l with

[], [] -> []
| _, [] -> [w]
| [], (’ ’::ls) -> loop [] ls
| _, (’ ’::ls) -> w :: (loop [] ls)
| _, (c::ls) -> loop (w@[c]) ls

in loop [] l;;

better_split [’a’; ’b’; ’ ’; ’ ’; ’c’; ’ ’; ’d’; ’ ’];;
- : char list list = [[’a’; ’b’]; [’c’]; [’d’]]
better_split [’a’; ’ ’];;
- : char list list = [[’a’]]
better_split [’ ’; ’ ’];;
- : char list list = []

2021/3/17 Design Principle of Programming Language 58

Basic Exceptions
OCaml’s exception mechanism is roughly similar to that found
in, for example, Java, it begins by defining an exception:

let rec fact n =
if n<0 then raise Bad
else if n=0 then 1
else n * fact(n-1);;

fact (-3);;
Exception: Bad.

exception Bad;;

Now, encountering raise Bad will immediately terminate
evaluation and return control to the top level:

2021/3/17 Design Principle of Programming Language 59

(Not) catching exceptions
Naturally, exceptions can also be caught within a program
(using the try ... with ... form), by pattern matching

try e with
p_1 -> e_1

|p_2 -> e_2
……

| p_n -> e_n

Exceptions are used in Ocaml as a control mechanism, either
to signal errors, or to control the flow of execution

– When an exception is raised, the current execution is aborted,
and control is thrown to the most recently entered active
exception handler

2021/3/17 Design Principle of Programming Language 60

Defining New Types of Data

2021/3/17 Design Principle of Programming Language 61

Predefined types
We have seen a number of data types:

𝑖𝑖𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑐𝑐𝑐𝑐𝑐𝑐𝑐
[𝑥𝑥; 𝑦𝑦; 𝑧𝑧] 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
(𝑥𝑥,𝑦𝑦, 𝑧𝑧) 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Ocaml has a number of other built-in data types — in
particular, float, with operations like +., *., etc
One can also create completely new data types

2021/3/17 Design Principle of Programming Language 62

The need for new types
The ability to construct new types is an essential part of
most programming languages

For example, suppose we are building a (very simple)
graphics program that displays circles and squares
We can represent each of these with three real numbers ...

2021/3/17 Design Principle of Programming Language 63

The need for new types
A circle is represented by the coordinates of its center and
its radius; a square is represented by the coordinates of its
bottom left corner and its width.

– both shapes can be represented as elements of the type:

float * float * float

Two problems with using this type to represent circles and
squares

– A bit long and unwieldy, both to write and to read
– Prone to mix circles and squares since their types are identical,

might accidentally apply the areaOfSquare function to a circle
and get a nonsensical result

let areaOfSquare (_, _, d) = d *. d;;
2021/3/17 Design Principle of Programming Language 64

Data Types
We can improve matters by defining square as a new type:

This does two things:
– creates a new type called square that is different from any other

type in the system
– creates a constructor called Square (with a capital S) that can be

used to create a square from three floats

type square = Square of float * float * float;;

Square (1.1, 2.2, 3.3);;
- : square = Square (1.1, 2.2, 3.3)

2021/3/17 Design Principle of Programming Language 65

Taking data types apart
And taking types apart with (surprise, surprise, ...) pattern
matching

Note: constructors like Square can be used both as
functions and as patterns

let areaOfSquare s =
match s with

Square(_, _, d) -> d *. d;;
val areaOfSquare : square -> float = <fun>

let bottomLeftCoords s =
match s with

Square(x, y, _) -> (x, y);;
val bottomLeftCoords : square -> float * float = <fun>

2021/3/17 Design Principle of Programming Language 66

Taking data types apart
These functions can be written a little more concisely by
combining the pattern matching with the function header:

let areaOfSquare (Square (_, _, d)) = d *. d;;
let bottomLeftCoords (Square (x, y, _)) = (x, y);;

2021/3/17 Design Principle of Programming Language 67

Variant types
Back to the idea of a graphics program, we want to have
several shapes on the screen at once
To do this we probably want to keep a list of circles and
squares, but such a list would be heterogenous
How do we make such a list?
Answer: Define a type that can be either a circle or a square

type shape = Circle of float * float * float
| Square of float * float * float;;

Square (1.0, 2.0, 3.0);;
- : shape = Square (1.0, 2.0, 3.0)

Now both constructors Circle and Square create values of type
shape

A type that can have more than one form is often called a
variant type
2021/3/17 Design Principle of Programming Language 68

Pattern matching on variants
We can also write functions that do the right thing on all
forms of a variant type, by using pattern matching:

let area s =
match s with

Circle (_, _, r) -> 3.14159 *. r *. r
| Square (_, _, d) -> d *. d;;

area (Circle (0.0, 0.0, 1.5));;
- : float = 7.0685775

2021/3/17 Design Principle of Programming Language 69

Variant types
A heterogeneous list:

let l = [Circle (0.0, 0.0, 1.5);
Square (1.0, 2.0, 1.0);
Circle (2.0, 0.0, 1.5);
Circle (5.0, 0.0, 2.5)];;

area (List.hd l);;
- : float = 7.0685775

2021/3/17 Design Principle of Programming Language 70

Data Type for Optional Values
Suppose we are implementing a simple lookup function
for a telephone directory: give it a string and get back a
number (say an integer), i.e, a function whose type is:

lookup: string -> directory -> int
where directory is a (yet to be decided) type that we’ll use
to represent the directory
However, this isn’t quite enough
What happens if a given string isn’t in the directory?
What should lookup return?
There are several ways to deal with this issue. One is to
raise an exception; another uses the following data type:
type optional_int = Absent | Present of int;;

2021/3/17 Design Principle of Programming Language 71

Data Type for Optional Values
To see how this type is used, let’s represent our directory
as a list of pairs:
let directory = [("Joe", 1234); ("Martha", 5672);

("Jane", 3456); ("Ed", 7623)];;
let rec lookup s l =

match l with
[] -> Absent

| (k, i)::t -> if k = s then Present(i)
else lookup s t;;

lookup "Jane" directory;;
- : optional_int = Present 3456

lookup "Karen" directory;;
- : optional_int = Absent
2021/3/17 Design Principle of Programming Language 72

Built-in options
options are often useful in functional programming,
OCaml provides a built-in type t option for each type t
Its constructors are None (corresponding to Absent) and
Some (for Present)

let rec lookup s l =
match l with

[] -> None
| (k,i)::t -> if k = s then Some(i)

else lookup s t;;

lookup "Jane" directory;;
- : optional_int = Some 3456

2021/3/17 Design Principle of Programming Language 73

Enumerations
The option type has one variant, None, that is a “constant”
constructor carrying no data values with it
Data types in which all the variants are constants can
actually be quite useful ...

type color = Red | Yellow | Green;;
let next c =
match c with Green -> Yellow | Yellow -> Red
| Red -> Green;

type color = Red | Yellow | Green;;
let next c =

match c with Green -> Yellow | Yellow -> Red | Red -> Green;
type day = Sunday | Monday | Tuesday | Wednesday

| Thursday | Friday | Saturday;;
let weekend d =

match d with
Saturday -> true

| Sunday -> true
| _ -> false;;

2021/3/17 Design Principle of Programming Language 74

A Boolean Data Type
A simple data type can be used to replace the built-in booleans, by
using the constant constructors True and False to represent true
and false
Here use different names as needed to avoid confusion between
our booleans and the built-in ones:

type color = Red | Yellow | Green;;
let next c =
match c with Green -> Yellow | Yellow -> Red
| Red -> Green;

type myBool = False | True;;
let myNot b = match b with False -> True | True -> False;;
let myAnd b1 b2 =

match (b1, b2) with
(True, True) -> True

| (True, False) -> False
| (False, True) -> False
| (False, False) -> False;;

Note that the behavior of myAnd is not quite the same as the
built-in &&!
2021/3/17 Design Principle of Programming Language 75

Recursive Types
Consider the tiny language of arithmetic expressions
defined by the following (BNF-like) grammar:

exp ::= number
| (exp + exp)
| (exp - exp)
| (exp * exp)

2021/3/17 Design Principle of Programming Language 76

Recursive Types
This grammar can be translated directly into a data type
definition:

type ast =
ANum of int

| APlus of ast * ast
| AMinus of ast * ast
| ATimes of ast * ast ;;

Notes:
– This datatype (like the original grammar) is recursive
– The type ast represents abstract syntax trees, which capture

the underlying tree structure of expressions, suppressing
surface details such as parentheses

2021/3/17 Design Principle of Programming Language 77

An evaluator for expressions
write an evaluator for these expressions:

val eval : ast -> int = <fun>

eval (ATimes (APlus (ANum 12, ANum 340), ANum 5));;
- : int = 1760

2021/3/17 Design Principle of Programming Language 78

An evaluator for expressions
The solution uses a recursive function plus a pattern
match.

let rec eval e =
match e with

ANum i -> i
| APlus (e1, e2) -> eval e1 + eval e2
| AMinus (e1, e2) -> eval e1 - eval e2
| ATimes (e1, e2) -> eval e1 * eval e2;;

2021/3/17 Design Principle of Programming Language 79

Polymorphism

2021/3/17 Design Principle of Programming Language 80

Polymorphism
We encountered the concept of polymorphism very briefly.
Let’s review it in a bit more detail

let rec last l =
match l with

[] -> raise Bad
| [x] -> x
| _::y -> last y

What type should we give to the parameter l?
It doesn’t matter what type of objects are stored in the
list: int list or bool list
However, if we chose one of these types, would not be
able to apply last to the other
2021/3/17 Design Principle of Programming Language 81

Polymorphism
Instead, we can give l the type ’a list, standing for an arbitrary
type
Ocaml will figure out what type we need when we use it

This version of last is said to be polymorphic, because it can be
applied to many different types of arguments

“Poly” = many, “morph” = shape
In other words,

last : ’a list -> ’a
can be read as “last is a function that takes a list of elements
of any type ‘a and returns an element of ‘a”

Here, the type of the elements of l is ’a. This is a type variable,
which can instantiated each time we apply last, by
replacing ’a with any type that we like

2021/3/17 Design Principle of Programming Language 82

A polymorphic append

let rec append (l1: ’a list) (l2: ’a list) =
if l1 = [] then l2
else List.hd l1 :: append (List.tl l1) l2;;

val append : ’a list -> ’a list -> ’a list = <fun>

append [4; 3; 2] [6; 6; 7];;
- : int list = [4; 3; 2; 6; 6; 7]

append ["cat"; "in"] ["the"; "hat"];;
- : string list = ["cat"; "in"; "the"; "hat"]

2021/3/17 Design Principle of Programming Language 83

Programming With Functions

2021/3/17 Design Principle of Programming Language 84

Functions as Data
Functions in OCaml are first class citizen — they have the
same rights and privileges as values of any other types,
e.g., they can be
– passed as arguments to other functions,
– returned as results from other functions,
– stored in data structures such as tuples and lists,
– etc.

2021/3/17 Design Principle of Programming Language 85

map: “apply-to-each”
OCaml has a predefined function List.map that takes a
function f and a list l and produces another list by
applying f to each element of l.
First let’s look at some examples

List.map square [1; 3; 5; 9; 2; 21];;
- : int list = [1; 9; 25; 81; 4; 441]

List.map not [false; false; true];;
- : bool list = [true; true; false]

Note that List.map is polymorphic: it works for lists of
integers, strings, booleans, etc.
2021/3/17 Design Principle of Programming Language 86

More on map
An interesting feature of List.map is its first argument is
itself a function
For this reason, we call List.map a higher-order function

Natural uses for higher-order functions arise frequently in
programming
One of OCaml’s strengths is that it makes higher-order
functions very easy to work with

In other languages such as Java, higher-order functions
can be (and often are) simulated using objects

2021/3/17 Design Principle of Programming Language 87

filter
Another useful higher-order function is List.filter: when
applied to a list l and a boolean function p, it builds a list
of the elements from l for which p returns true s

let rec even (n:int) =
if n=0 then true else if n=1 then false
else if n<0 then even (-n) else even (n-2);;

val even : int -> bool = <fun>

List.filter even [1; 2; 3; 4; 5; 6; 7; 8; 9];;
- : int list = [2; 4; 6; 8]

List.filter palindrome [[1]; [1; 2; 3]; [1; 2; 1]; []];;
- : int list list = [[1]; [1; 2; 1]; []]

2021/3/17 Design Principle of Programming Language 88

Defining map
List.map is predefined in the OCaml system, but there is
nothing magic about it : we can define our own map
function with the same behavior easily as
let rec map (f: ’a -> ’b) (l: ’a list) =

if l = [] then []
else f (List.hd l) :: map f (List.tl l)

val map : (’a -> ’b) -> ’a list -> ’b list = <fun>

map String.length ["The"; "quick"; "brown"; "fox"];;
- : int list = [3; 5; 5; 3]

The type of map is probably even more polymorphic than you
expected! The list that it returns can actually be of a different
type from its argument:

2021/3/17 Design Principle of Programming Language 89

Defining filter
Similarly, we can define our own filter that behaves the
same as List.filter

let rec filter (p: ’a -> bool) (l: ’a list) =
if l = [] then []
else if p (List.hd l) then

List.hd l :: filter p (List.tl l)
else

filter p (List.tl l)
val filter : (’a -> bool) -> ’a list -> ’a list = <fun>

2021/3/17 Design Principle of Programming Language 90

Multi-parameter functions

let foo x y = x + y;;
val foo : int -> int -> int = <fun>

let bar (x, y) = x + y;;
val bar : int * int -> int = <fun>

We have seen two ways of writing functions with multiple
parameters:

2021/3/17 Design Principle of Programming Language 91

Another useful higher-order function: fold

In general:
f [a1; ...; an] b

is
f a1 (f a2 (... (f an b) ...))

let rec fold f l acc =
match l with

[] -> acc
| a::l -> f a (fold f l acc);;

val fold : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

fold (fun a b -> a + b) [1; 3; 5; 100] 0;;
- : int = 109

2021/3/17 Design Principle of Programming Language 92

Using fold
Most of the list-processing functions we have seen can be
defined compactly in terms of fold:

let listSum l =
fold (fun a b -> a + b) l 0;;

val listSum : int list -> int = <fun>

let length l =
fold (fun a b -> b + 1) l 0;;

val length : ’a list -> int = <fun>

let filter p l =
fold (fun a b -> if p a then (a::b) else b) l [];;

2021/3/17 Design Principle of Programming Language 93

Using fold

(* List of numbers from m to n, as before *)
let rec fromTo m n =

if n < m then []
else m :: fromTo (m+1) n;;

val fromTo : int -> int -> int list = <fun>

let fact n =
fold (fun a b -> a * b) (fromTo 1 n) 1;;

val fact : int -> int = <fun>

2021/3/17 Design Principle of Programming Language 94

Forms of fold
OCaml List module actually provides two folding functions

The one we’re calling fold is List.fold_right
List.fold_left performs the same basic operation but takes
its arguments in a different order

List.fold_left
: (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a

List.fold_right
: (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

2021/3/17 Design Principle of Programming Language 95

The unit type
OCaml provides another built-in type called unit, with just
one inhabitant, written ()
let x = ();;
val x : unit = ()

let f () = 23 + 34;;
val f : unit -> int = <fun>

f ();;
- : int = 57

Why is this useful?
Every function in a functional language must return a value
Unit is commonly used as the value of a procedure that
computes by side-effect

2021/3/17 Design Principle of Programming Language 96

Use of unit
A function from unit to ’a is usually a delayed computation
of type ’a. e.g.,

... the long and complex calculation is just boxed up in a
closure that we can save for later (by binding it to a
variable)
When we actually need the result, we apply f to () and
the calculation actually happens:

let f () = <long and complex calculation>;;
val f : unit -> int = <fun>

f ();;
- : int = 57

2021/3/17 Design Principle of Programming Language 97

Thunks

A function accepting a unit argument is often called a
thunk, which is widely used in functional programming

Suppose we are writing a function where we need to
make sure that some “finalization code” gets executed,
even if an exception is raised

2021/3/17 Design Principle of Programming Language 98

Thunks
let read file =

let chan = open_in file in
try

let nbytes = in_channel_length chan in
let string = String.create nbytes in

really_input chan string 0 nbytes;
close_in chan;

string
with exn ->

(* finalize channel *)
close_in chan;
(* re-raise exception *)
raise exn;;

2021/3/17 Design Principle of Programming Language 99

Thunks
let read file =

let chan = open_in file in
let finalize () = close_in chan in
try

let nbytes = in_channel_length chan in
let string = String.create nbytes in
really_input chan string 0 nbytes;
finalize ();
string

with exn ->
(* finalize channel *)
finalize ();
(* re-raise exception *)
raise exn;;

2021/3/17 Design Principle of Programming Language 100

Thunks: go further...
let unwind_protect body finalize =

try
let res = body() in
finalize();
res

with exn ->
finalize();
raise exn;;

let read file =
let chan = open_in file in
unwind_protect

(fun () ->
let nbytes = in_channel_length chan in
let string = String.create nbytes in
really_input chan string 0 nbytes;
string)

(fun () -> close_in chan);;

2021/3/17 Design Principle of Programming Language 101

Reference Cell
let fact n =

let result = ref 1 in
for i = 2 to n do

result := i * !result
done;

!result;;
val fact : int -> int = <fun>

fact 5;;
- : int = 120

updatable memory cells, called references: ref init returns a new
cell with initial contents init, !cell returns the current contents of
cell, and cell := v writes the value v into cell.

2021/3/17 Design Principle of Programming Language 102

The rest of OCaml
We’ve seen only a small part of the OCaml language
Some other highlights:

– advanced module system
– imperative features (ref cells, arrays, etc.); the

“mostly functional” programming style
– objects and classes

2021/3/17 Design Principle of Programming Language 103

Closing comments on OCaml
Some common strong points of OCaml, Java, C#, etc.
– strong, static typing (no core dumps!)
– garbage collection (no manual memory management!!)

Some advantages of Ocaml compared to Java, etc.
– excellent implementation (fast, portable, etc.)
– powerful module system
– streamlined support for higher-order programming
– sophisticated pattern matching
– parametric polymorphism (Java and C# are getting this

“soon”)
Some disadvantages:
– smaller developer community
– smaller collection of libraries
– object system somewhat clunky

2021/3/17 Design Principle of Programming Language 104

Performance
It’s said that OCaml is fast, faster than Haskell
– OCaml performed very well in the previous ICFP contests

The reason for OCaml’s excellent performance:
– strict evaluation
– the compiler
– mutable data structures

Or as some would say trading elegance for efficiency

2021/3/17 Design Principle of Programming Language 105

Input & Output
Standard built-in I/O functions

2021/3/17 Design Principle of Programming Language 106

I/O Library
Two data types:

– in_channel: where characters can be read from

– out_channel: where characters can be written to

There are 3 channels open at program startup:
val stdin : in_channel
val stdout : out_channel
val stderr : out_channel

2021/3/17 Design Principle of Programming Language 107

File opening & closing
Two functions to open an output file:

– open_out: open a file for writing text data
val open_out: string -> out_channel

– open_out_bin: open a file for writing binary data
val open_out_bin: string -> out_channel

Two functions to open an input file:
– open_in: open a file for reading text data

val open_in: string -> in_channel
– open_in_bin: open a file for reading binary data

val open_in_bin: string -> in_channel

2021/3/17 Design Principle of Programming Language 108

File opening & closing
Two sophisticated opening functions, requires an
argument of type open_flag:

– open_in_gen:
val open_in_gen: open_flag list -> int -> string -> in_channel
– open_out_gen:
val open_out_gen: open_flag list -> int -> string -> out_channel

type open_flag =
Open_rdonly | Open_wronly | Open_append

| Open_creat | Open_ trunc | Open_excl
| Open_binary | Open_text | Open_nonblock

2021/3/17 Design Principle of Programming Language 109

File opening & closing
Functions to close the channel:

– close_in:
val close_in: out_channel -> unit

– close_out:
val close_out : out_channel -> unit

If you forget to close a file. The garbage collector
will eventually close it for you.
However, a good practice is to close the channel
manually once you are done with it.

2021/3/17 Design Principle of Programming Language 110

Writing/reading values on a channel
val output_char: out_channel -> char -> unit (write a single
character)
val output_string: out_channel -> string -> unit (write all the
characters in a string)
val output : out_channel -> string -> int -> int -> unit (write
part of a string, offset and length)

val input_char: in_channel -> char (read a single character)
val input_line: in_channel -> string (read an entire line)
val input : in_channel -> string -> int -> int -> int (raise the
exception End_of_file if the end of the file is reached before
the entire value could be read)

2021/3/17 Design Principle of Programming Language 111

Writing/reading values on a channel
Functions for passing arbitrary OCaml values on a
channel opened in binary mode:

– Read/write a single byte value
val output_byte: out_channel -> int -> unit
val input_byte: in_channel -> int

– Read/write a single integer value
val output_binary_int: out_channel -> int -> unit
val input_binary_int: in_channel -> int

– Read/write arbitrary OCaml values, unsafe!
val output_value: out_channel -> ‘ -> unit
val input_value: in_channel -> ‘ (returns a value of arbitrary
type ‘ and Ocaml make no effort to check the type)

2021/3/17 Design Principle of Programming Language 112

Channel manipulation
Functions to modify the position in a file:

– change the file position
val seek_out: out_channel -> int -> unit
val seek_in: in_channel -> int -> unit

– return the current position in the file
val pos_out: out_channel -> int
val pos_in: in_channel -> int

– return the total number of characters in the file
val pos_out: out_channel -> int
val pos_in: in_channel -> int

2021/3/17 Design Principle of Programming Language 113

Files
Compilation units

Programs

2021/3/17 Design Principle of Programming Language 114

File vs ADT
Modules for data hiding & encapsulation, including

1. Interface/Signature : *.mli
2. Implementation : *.ml

to package together related definitions (such as the
definitions of a data type and associated operations
over that type) and enforce a consistent naming
scheme for these definitions

Ocaml provides module system that makes it easy to
use the concepts of encapsulation & data hiding
– Every program file acts as an abstract module, and called

a compilation unit

2021/3/17 Design Principle of Programming Language 115

Files: Signatures
• A Signature contains

– Type definitions
– Function declarations
for the visible types and methods in the module

• A module signature usually has three parts:
– Data types used by the module
– Exception used by the module
– Method type declarations for all the externally visible

methods defined by the module

• Type declaration in a signature can be
– Abstract (declaring a type without giving the type definition)
– Transparent (declaring a type including the type definition)

2021/3/17 Design Principle of Programming Language 116

Files: Implementation
Module Implementation is defined in a .ml file with the
same base name as the signature file, and consists of
– Data types used by the module.
– Exception used by the module.
– Method definitions

Source file is stored in a file with .ml (mli) suffix,
and ;; terminators are not necessary

2021/3/17 Design Principle of Programming Language 117

Building a program
Once a compilation unit is defined, the types and
methods can be used by other files by prefixing
the names (of the methods) with the capitalized
file name

2021/3/17 Design Principle of Programming Language 118

Compiling a program
Using ocamlc, whose usage is much like cc, to compile, and produce files
with suffix *.cmo (byte-code version)

% ocamlc –c filename.ml
% ocamlc –c filename.mli

Another compiler: ocamlopt => *.cmx (native machine code, roughly
3 times faster)

The *.cmo files can be linked by
% ocamlc –o outputfile *.cmo *.cmo (default a.out)
Order dependent !!

Using ocamldebug, whose usage is much like GNU gdb, to debug a
program complied with ocamlc (back command will go back one
instruction)

% ocamlc –c –g …..
% ocamlc –o –g …..

2021/3/17 Design Principle of Programming Language 119

Expose a namespace
Using statement

open module_name
to open a module interface, which allow the use of
unqualified names for types, exceptions, and methods
– Using the full name module_name. method_name to

refer is okay, but tedious

Note: multiple opened modules will define the same name
– The last module with open statement will determine the value of the

symbol
– Fully qualified names can be used to access values that may have

been hidden by open statement

2021/3/17 Design Principle of Programming Language 120

Utilities
in

OCaml System

Part II

Where are we going?
Overall goal:

– we want to turn strings of characters – code – into
computer instructions

Easiest to break this down into phases:
– First, turn strings into abstract syntax trees (ASTs) –

this is parsing
– Next, turn abstract syntax trees into executable

instructions – compiling or interpreting

2021/3/17 Design Principle of Programming Language 122

Lexing and Parsing
Strings are converted into ASTs in two phases:

Lexing Convert strings (streams of characters) into lists
(or streams) of tokens,, representing words in
the language (lexical analysis)

Parsing Convert lists of tokens into abstract syntax trees
(syntactic analysis)

2021/3/17 Design Principle of Programming Language 123

Lexing
With lexing, we break sequences of characters into
different syntactic categories, called tokens.
As an example, we could break:

asd 123 jkl 3.14

into this:
[String ‘‘asd’’, Int 123; String ‘‘jkl’’; Float 3.14]

2021/3/17 Design Principle of Programming Language 124

Lexing Strategy
Our strategy will be to leverage regular expressions and
finite automata to recognize tokens:
– each syntactic category will be described by a regular

expression (with some extended syntax)
– words will be recognized by an encoding of a

corresponding finite state machine

However, this still leaves us with a problem:
How do we pull multiple words out of a string, instead
of just recognizing a single word?

2021/3/17 Design Principle of Programming Language 125

Lexing : Multiple tokens
To solve this, we will modify the behavior of the DFA.

– if we find a character where there is no transition from the
current state, stop processing the string

– if we are in an accepting state, return the token corresponding
to what we found as well as the remainder of the string

– now, use iterator or recursion to keep pulling out more tokens
– if we were not in an accepting state, fail – invalid syntax

2021/3/17 Design Principle of Programming Language 126

Lexing Options
We could write a lexer by writing regular expressions, and
then translating these by hand into a DFA.

sounds tedious and repetitive – perfect for a computer!

Can we write a program that takes regular expressions
and generates automata for us?

Someone already did – Lex!
– GNU version of this is flex
– OCaml version of this is ocamllex

2021/3/17 Design Principle of Programming Language 127

How does it work?
We need a few core items to get this working:

– Some way to identify the input string – we’ll call this the lexing
buffer

– A set of regular expressions that correspond to tokens in our
language

– A corresponding set of actions to take when tokens are
matched

The lexer can then take the regular expressions to build
state machines, which are then used to process the lexing
buffer.

– If we reach an accept state and can take no further transitions,
we can apply the actions.

2021/3/17 Design Principle of Programming Language 128

Syntax of lexer definitions
(*head sections*)
{ header }
(*definition sections*)
let ident = regexp …
(*rule sections*)
rule entrypoint [arg1… argn] =

parse regexp { action }
| …
| regexp { action }

and entrypoint [arg1… argn] =
parse …

and …
(*rule sections*)
{ trailer }

Comments are delimited by (* and *), as in OCaml
The parse keyword can be replaced by the shortest keyword
2021/3/17 Design Principle of Programming Language 129

Entry points
The names of the entry points must be valid identifiers for
OCaml values (starting with a lowercase letter)
Each entry point becomes an OCaml function that takes
n+1 arguments

– arguments arg1… argn must be valid identifiers for Ocaml
– the extra implicit last argument being of type Lexing.lexbuf,

Characters are read from the Lexing.lexbuf argument and
matched against the regular expressions provided in the rules,
until a prefix of the input matches one of the rules.

– the corresponding action is then evaluated and returned as the
result of the function

2021/3/17 Design Principle of Programming Language 130

Regular Expressions in ocamllex
The regular expression format is similar to what we’ve seen so far,
but still slightly different.

– ‘ regular-char ∣ escape-sequence ’ A character constant, with the
same syntax as OCaml character constants. Match the denoted
character.

– _ (underscore) Match any character.
– eof Match the end of the lexer input.
– “ { string-character } ” A string constant, with the same syntax as

OCaml string constants. Match the corresponding sequence of
characters.

– [character-set] Match any single character belonging to the
given character set. Valid character sets are: single character
constants ' c '; ranges of characters ' c1 ' - ' c2 ' (all characters between
c1 and c2, inclusive); and the union of two or more character sets,
denoted by concatenation.

– [^ character-set] Match any single character not belonging to the
given character set.

2021/3/17 Design Principle of Programming Language 131

http://caml.inria.fr/pub/docs/manual-ocaml-400/lex.html#escape-sequence
http://caml.inria.fr/pub/docs/manual-ocaml-400/lex.html#string-character

Regular Expressions in ocamllex
– regexp1 # regexp2 (difference of character sets) Regular

expressions regexp1 and regexp2 must be character sets defined
with […] (or a a single character expression or underscore _).
Match the difference of the two specified character sets

– regexp *(repetition) Match the concatenation of zero or more
strings that match regexp

– regexp +(strict repetition) Match the concatenation of one or
more strings that match regexp

– regexp ?(option) Match the empty string, or a string matching
regexp

2021/3/17 Design Principle of Programming Language 132

http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp

Regular Expressions in ocamllex
– regexp1 | regexp2 (alternative) Match any string that matches

regexp1 or regexp2

– regexp1 regexp2 (concatenation) Match the concatenation of
two strings, the first matching regexp1, the second matching
regexp2

– (regexp) Match the same strings as regexp
– ident Reference the regular expression bound to ident by an

earlier let ident = regexp definition
– regexp as ident Bind the substring matched by regexp to

identifier ident

2021/3/17 Design Principle of Programming Language 133

http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/lex.html#ident
http://caml.inria.fr/pub/docs/manual-ocaml-400/lex.html#ident
http://caml.inria.fr/pub/docs/manual-ocaml-400/lex.html#ident
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/lex.html#ident
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual026.html#regexp
http://caml.inria.fr/pub/docs/manual-ocaml-400/lex.html#ident

Actions
Can be arbitrary OCaml expressions. They are evaluated in a context
where the identifiers defined by using the as construct are bound to
subparts of the matched string
Additionally, lexbuf is bound to the current lexer buffer. Some typical uses
for lexbuf:

– Lexing.lexeme lexbuf Return the matched string
– Lexing.lexeme_char lexbuf n Return the nth character in the matched

string. The first character corresponds to n = 0
– Lexing.lexeme_start lexbuf Return the absolute position in the input

text of the beginning of the matched string (i.e. the offset of the first
character of the matched string). The first character read from the input
text has offset 0

– Lexing.lexeme_end lexbuf Return the absolute position in the input
text of the end of the matched string (i.e. the offset of the first character
after the matched string)

– entrypoint [exp1 … expn] lexbuf Recursively call the lexer on the given
entry point

2021/3/17 Design Principle of Programming Language 134

Header and trailer
Can be arbitrary OCaml text enclosed in curly braces.

– Either or both can be omitted. If present, the header text is
copied as is at the beginning of the output file and the trailer
text at the end

– Typically, the header section contains the open directives
required by the actions, and possibly some auxiliary functions
used in the actions

2021/3/17 Design Principle of Programming Language 135

Sample Lexer

1 rule main = parse
2 | [’0’-’9’]+ { print_string “Int\n"}
3 | [’0’-’9’]+’.’[’0’-’9’]+ { print_string "Float\n"}
4 | [’a’-’z’]+ { print_string "String\n"}
5 | _ { main lexbuf }
6 {
7 let newlexbuf = (Lexing.from_channel stdin) in
8 print_string "Ready to lex.\n";
9 main newlexbuf
10 }

2021/3/17 Design Principle of Programming Language 136

Mechanics of Using ocamllex
Lexer definitions using ocamllex are written in a file with
a .mll extension

– including the regular expressions, with associated actions for
each

OCaml code for the lexer is generated with
ocamllex lexer.mll

this generates the code for the lexer in file file.ml
– This file defines one lexing function per entry point in the lexer

definition

2021/3/17 Design Principle of Programming Language 137

Options for ocamllex
The following command-line options are recognized by
ocamllex

– ml Output code that does not use OCaml’s built-in automata
interpreter. Instead, the automaton is encoded by OCaml
functions. This option mainly is useful for debugging ocamllex,
using it for production lexers is not recommended

– o output-file Specify the name of the output file produced
by ocamllex. The default is the input file name with its
extension replaced by .ml

– q Quiet mode Ocamllex normally outputs informational
messages to standard output. They are suppressed if option -
q is used

– v or –version Print version string and exit
– Vnum Print short version number and exit
– help or – help Display a short usage summary and exit

2021/3/17 Design Principle of Programming Language 138

Parsing
Convert lists of tokens into abstract syntax trees

Someone already did – Yacc!
– GNU: bison
– Ocaml: ocamlyacc

2021/3/17 Design Principle of Programming Language 139

Yacc
provides a general tool for describing the input to a
computer program
– The Yacc user specifies the structures of his input,

together with code to be invoked as each such
structure is recognized

– Yacc turns such a specification into a subroutine that
handles the input process; frequently, it is convenient
and appropriate to have most of the flow of control in
the user's application handled by this subroutine

2021/3/17 Design Principle of Programming Language 140

ocamlyacc Command
Produces a parser from a context-free grammar
specification with attached semantic actions, in the style of
yacc
Executing

ocamlyacc options grammar.mly
produces OCaml code for a parser in the file grammar.ml,
and its interface in file grammar.mli

– The generated module defines one parsing function per entry
point in the grammar. These functions have the same names as
the entry points

– Parsing functions take as arguments a lexical analyzer (a function
from lexer buffers to tokens) and a lexer buffer, and return the
semantic attribute of the corresponding entry point

2021/3/17 Design Principle of Programming Language 141

Options for ocamlyacc
-bprefix Name the output files prefix.ml, prefix.mli,

prefix.output, instead of the default naming
convention

-q This option has no effect
-v Generate a description of the parsing tables and a

report on conflicts resulting from ambiguities in the
grammar. The description is put in file grammar.output

-version Print version string and exit
-vnum Print short version number and exit
- Read the grammar specification from standard input.

The default output file names are stdin.ml and
stdin.mli

-- file Process file as the grammar specification, even if its
name starts with a dash (-) character. This option must
be the last on the command line

2021/3/17 Design Principle of Programming Language 142

Syntax of grammar definitions
%{

header
%}

declarations
%%

rules
%%

trailer
Comments are enclosed between /* and */ (as in C) in the
“declarations” and “rules” sections, and between (* and *)
(as in OCaml) in the “header” and “trailer” sections

2021/3/17 Design Principle of Programming Language 143

header and trailer
OCaml code that is copied as is into file grammar.ml
– Both sections are optional
– The header goes at the beginning of the output file; it

usually contains open directives and auxiliary
functions required by the semantic actions of the
rules

– The trailer goes at the end of the output file

2021/3/17 Design Principle of Programming Language 144

Declarations
given one per line. They all start with a % sign.
%token constr … constr
%token < typexpr > constr …

Declare the given symbols constr … constr as tokens (terminal symbols).
%start symbol … symbol

Declare the given symbols as entry points for the grammar. For each
entry point, a parsing function with the same name is defined in the
output module

%type < typexpr > symbol … symbol
Specify the type of the semantic attributes for the given symbols. This is
mandatory for start symbols only

%left symbol … symbol
%right symbol … symbol
%nonassoc symbol … symbol

2021/3/17 Design Principle of Programming Language 145

http://caml.inria.fr/pub/docs/manual-ocaml-400/manual011.html#constr
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual011.html#constr
http://caml.inria.fr/pub/docs/manual-ocaml-400/types.html#typexpr
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual011.html#constr
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual011.html#constr
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual011.html#constr
http://caml.inria.fr/pub/docs/manual-ocaml-400/types.html#typexpr

Rules
The syntax for rules is as usual:
nonterminal :

symbol … symbol { semantic-action }
| …
| symbol … symbol { semantic-action }

;
Rules can also contain the %prec symbol directive in the right-hand
side part, to override the default precedence and associativity of
the rule with the precedence and associativity of the given symbol
Semantic actions are arbitrary OCaml expressions, that are
evaluated to produce the semantic attribute attached to the
defined nonterminal
The semantic actions can access the semantic attributes of the
symbols in the right-hand side of the rule with the $ notation:

– $1 is the attribute for the first (leftmost) symbol, $2 is the
attribute for the second symbol, etc

2021/3/17 Design Principle of Programming Language 146

Utilities
in Environment

make
one critical utility in the Unix/Linux-like
environment

– 自动管理、检查文件之间的依赖关系
– 自动判断哪些文件要重新编译, 调用外部程序进

行处理
• 根据文件的修改时间

– 常用于编译源文件生成目标文件, 将目标文件链
接成可执行文件或库

2021/3/17 Design Principle of Programming Language 148

makefile
• 用文件 ” makefile” 或 ” Makefile” 描

述依赖和动作，动作由shell 执行
• 命令make解释”makefile”

2021/3/17 Design Principle of Programming Language 149

Makefile for hello

$make
gcc hello.c –o hello

hello: hello.c
gcc hello.c -o hello

e.g., GNU make

2021/3/17 Design Principle of Programming Language 150

目标和依赖

makefile 由如下的一系列规则组成

target1 target2 target3 : prerequisite1, prerequisite2
command1
command2

2021/3/17 Design Principle of Programming Language 151

目标和依赖说明
• 目标(target): 要做的事情, 要生成的文件
• 倚赖(prerequisite): 生成目标前, 所有其倚赖必须

存在
• 命令(command): 根据依赖生成目标的shell 命令.

命令前必须是 tab缩进
• makefile 中的第一个规则称为缺省目标(goal)

2021/3/17 Design Principle of Programming Language 152

工作过程
• 若在命令行给出了目标，则make 找到该目

标的规则；否则执行缺省目标
• 对于每个规则，首先查看所有的依赖和目标

– 若某个依赖有规则， 则首先处理该依赖的规则
– 若某个依赖的时间比目标新， 则执行命令更新目

标
– 命令由shell 执行， 若执行错误，则中止处理

2021/3/17 Design Principle of Programming Language 153

规则
• 显式规则(explicit rule): makefile 中显式声明的规

则， 如 vpath.o variable.o: make.h config.h
dep.h

• 隐式规则(implicit rule): make 内置的模式规则或
后缀规则
– 在GNU make 中，后缀规则可被模式规则代替

• 模式规则(pattern rule): 用通配符取代显式
的文件名，跟Bourne sh 相同， 如

~ * ? [...] [^...]

2021/3/17 Design Principle of Programming Language 154

变量

在makefile 中可以定义变量: Name = Value
随后通过$(Name) 或 ${Name} 访问
make 的自动变量

$@ 目标文件名

$% 档案文件(库) 的成员

$< 第一个依赖文件的文件名

$? 所有比目标文件新的倚赖文件名列表, 以空格分隔

$^ 所有依赖文件名列表, 以空格分隔

$+ 和$^ 类似, 包含重复文件名

$* 目标文件名去除后缀后的部分

2021/3/17 Design Principle of Programming Language 155

An Implementation
for Arithmetic

Expression

Part III

Structure of arith

Scan tokes
(lexer.mll)

Parse terms
(parser.mly)

Evaluate
each terms

(eval in
core.ml)

Print the
values

(printtm in
syntax.ml)

157

main.ml drives the whole process

syntax.ml defines the terms

2021/3/17 Design Principle of Programming Language

Makefile

Rules for compiling and linking the typechecker/evaluator
#
Type
make to rebuild the executable file f
make windows to rebuild the executable file f.exe
make test to rebuild the executable and run it on input file test.f
make clean to remove all intermediate and temporary files
make depend to rebuild the intermodule dependency graph that is used
by make to determine which order to schedule
compilations. You should not need to do this unless
you add new modules or new dependencies between
existing modules. (The graph is stored in the file
.depend)

These are the object files needed to rebuild the main executable file
#
OBJS = support.cmo syntax.cmo core.cmo parser.cmo lexer.cmo main.cmo

Files that need to be generated from other files
DEPEND += lexer.ml parser.ml

2021/3/17 Design Principle of Programming Language 158

Syntax.ml

159

info: a data type recording the position of the term in
the source file

2021/3/17 Design Principle of Programming Language

eval in core.ml

160

eval1: perform a single step reduction

2021/3/17 Design Principle of Programming Language

Commands
• Each line of the source file is parsed as a command

– type command = | Eval of info * term
– New commands will be added later

• Main routine for each file
let process_file f =

alreadyImported := f :: !alreadyImported;
let cmds = parseFile f in
let g c =

open_hvbox 0;
let results = process_command c in

print_flush();
results

in
List.iter g cmds

1612021/3/17 Design Principle of Programming Language

Exercise arith.simple_use
• Using arith to write the following equation

– Return five if two is not zero, otherwise return nine

– Hint: read the code in parser.mly

1622021/3/17 Design Principle of Programming Language

Homework
• Please get familiar with OCaml and its utilities
• Please download the implementation package of

the TAPL, and digest the source codes in archives of
arith, tyarith, untype.

• Please give your implementation for Chap. 4
– Submit your code as a compressed file with one of the

above names
– Your submission should contain file test.f that contains

exactly the expressions to be tested
– TA will perform the following two commands to verify

your submission:
• make
• ./f test.f

2021/3/17 Design Principle of Programming Language 163

	编程语言的设计原理�	Design Principles of �	Programming Languages
	Chapter 0+: Implementation
	A Quick Tour of OCaml
	Resources
	 Why OCaml?
	OCaml used in the Course
	Quick fact sheet
	OCaml
	Functional Programming
	The Top Level
	The Top Level
	Expressions
	Expressions
	Basic types
	Basic types
	Type boolean
	Conditional expressions
	Giving things names
	Giving things names
	Giving things names
	Functions
	Functions
	Functions
	Recursive functions
	Recursive functions
	Recursive functions: Making change
	Recursive functions: Making change
	Recursive functions: Making change
	Recursive functions: Making change
	Recursive functions: Making change
	Recursive functions: Making change
	Aggregate types
	Lists
	Lists are homogeneous
	Constructing Lists
	Constructing Lists
	Taking Lists Apart
	More list examples
	Recursion on lists
	Consing on the right
	A better rev
	Tail recursion
	Basic Pattern Matching
	Basic Pattern Matching
	Complex Patterns
	Type Inference
	Type Inference
	Polymorphism (first taste)
	Tuples
	Tuples are not lists
	Tuples and pattern matching
	Example: Finding words **
	An implementation of split
	Aside: Local function definitions
	Local function definitions
	A Better Split ?
	 A Better Split
	 A Better Split
	Basic Exceptions
	 (Not) catching exceptions
	幻灯片编号 61
	Predefined types
	The need for new types
	The need for new types
	Data Types
	Taking data types apart
	Taking data types apart
	Variant types
	Pattern matching on variants
	 Variant types
	Data Type for Optional Values
	Data Type for Optional Values
	Built-in options
	Enumerations
	A Boolean Data Type
	Recursive Types
	Recursive Types
	An evaluator for expressions
	An evaluator for expressions
	幻灯片编号 80
	Polymorphism
	Polymorphism
	A polymorphic append
	幻灯片编号 84
	Functions as Data
	map: “apply-to-each”
	More on map
	filter
	Defining map
	Defining filter
	Multi-parameter functions
	Another useful higher-order function: fold
	Using fold
	Using fold
	Forms of fold
	The unit type
	Use of unit
	Thunks
	Thunks
	Thunks
	Thunks:　go further...
	Reference Cell
	The rest of OCaml
	Closing comments on OCaml
	Performance
	幻灯片编号 106
	I/O Library
	File opening & closing
	File opening & closing
	File opening & closing
	Writing/reading values on a channel
	Writing/reading values on a channel
	Channel manipulation
	幻灯片编号 114
	File vs ADT
	Files: Signatures
	Files: Implementation
	Building a program
	Compiling a program
	Expose a namespace
	Utilities �in�OCaml System
	Where are we going?
	Lexing and Parsing
	Lexing
	Lexing Strategy
	Lexing : Multiple tokens
	Lexing Options
	How does it work?
	Syntax of lexer definitions
	Entry points
	Regular Expressions in ocamllex
	Regular Expressions in ocamllex
	Regular Expressions in ocamllex
	Actions
	Header and trailer
	Sample Lexer
	Mechanics of Using ocamllex
	Options for ocamllex
	Parsing
	Yacc
	ocamlyacc Command
	Options for ocamlyacc
	Syntax of grammar definitions
	header and trailer
	Declarations
	Rules
	Utilities �in Environment
	make
	makefile
	Makefile for hello
	目标和依赖
	目标和依赖说明
	工作过程
	规则
	变量
	An Implementation �for Arithmetic Expression
	Structure of arith
	Makefile
	Syntax.ml
	eval in core.ml
	Commands
	Exercise arith.simple_use
	Homework

