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Computational Effects

Also known as side effects.
A function or expression is said to have a side effect if,
in addition to returning a value, it also modifies some
state or has an observable interaction with calling
functions or the outside world.
– modify a global variable or static variable, modify one of

its arguments,
– raise an exception,
– write data to a display or file, read data, or
– call other side-effecting functions.

In the presence of side effects, a program's behavior
may depend on history; i.e., the order of evaluation
matters.



Computational Effects

Side effects are the most common way that a
program interacts with the outside world (people, file
systems, other computers on networks).
The degree to which side effects are used depends on
the programming paradigm.
– Imperative programming is known for its frequent

utilization of side effects.
– In functional programming, side effects are rarely used.

• Functional languages like Standard ML, Scheme and Scala
do not restrict side effects, but it is customary for
programmers to avoid them.

• The functional language Haskell expresses side effects such
as I/O and other stateful computations using monadic
actions.



Mutability

So far, what we have discussed does not yet include side
effects .

In particular, whenever we defined function, we never
changed variables or data. Rather, we always computed
new data.
– E.g., the operations to insert an item into the data structure

didn't effect the old copy of the data structure. Instead, we
always built a new data structure with the item appropriately
inserted.

For the most part, programming in a functional style (i.e.,
without side effects) is a "good thing" because it's easier to
reason locally about the behavior of the program.



Mutability

Writing values into memory locations is the
fundamental mechanism of imperative languages
such as C/C++.

Mutable structures are

– required to implement many efficient algorithms.

– also very convenient to represent the current state
of a state machine.



Mutability
In most programming languages, variables are
mutable — i.e., a variable provides both
– a name that refers to a previously calculated value, and
– the possibility of overwriting this value with another (which

will be referred to by the same name)

In some languages (e.g., OCaml), these features are
separate:
– variables are only for naming — the binding between a

variable and its value is immutable
– introduce a new class of mutable values (called reference

cells or references)
• at any given moment, a reference holds a value (and can

be dereferenced to obtain this value)
• a new value may be assigned to a reference



Basic Examples

#let r = ref 5

val r : int ref = {contents = 5}
//  The value of r is a reference to a cell that always contain a number.

# r:= !r +3

# !r

-: int = 8

(r:=succ(!r); !r)



Basic Examples

# let flag = ref true;;

-val flag: bool ref = {contents = true}

# if !flag then 1 else 2;;

-: int = 1



Reference
Basic operations

– allocation ref (operator) 

– dereferencing ! 

– assignment :=

Is there any difference between the expressions of ?

– 5 + 3; 

– r: = 8;

– (r:=succ(!r); !r)

– (r:=succ(!r); (r:=succ(!r); (r:=succ(!r); !r)

sequencing



Reference

Exercise 13.1.1  : Draw a similar diagram showing the 
effects of evaluating the  expressions a = {ref 0, ref 0} 
and b = (𝜆x:Ref Nat. {x,x}) (ref 0)



Aliasing
A value of type ref T is a pointer to a cell holding a value of
typeT

5

r = 

If this value is “copied” by assigning it to another variable：
s=r;

the cell pointed to is not copied. ( r and s are aliases)

5

r = s = 

So we can change r by assigning to s:

(s:=10; !r)



Aliasing all around us

Reference cells are not the only language feature
that introduces the possibility of aliasing

– arrays

– communication channels

– I/O devices (disks, etc.)



The difficulties of aliasing
The possibility of aliasing invalidates all sorts of useful forms
of reasoning about programs, both
by programmers：

e.g., function

𝜆𝑟: 𝑅𝑒𝑓 𝑁𝑎𝑡. 𝜆𝑠: 𝑅𝑒𝑓 𝑁𝑎𝑡. (𝑟 ≔ 2; 𝑠 ≔ 3; ! 𝑟)
always returns 2 unless 𝑟 and s are aliases

and by compilers:
Code motion out of loops, common sub-expression elimination,
allocation of variables to registers, and detection of uninitialized
variables all depend upon the compiler knowing which objects a
load or a store operation could reference.

High-performance compilers spend significant energy on
alias analysis to try to establish when different variables
cannot possibly refer to the same storage



The benefits of aliasing

The problems of aliasing have led some language
designers simply to disallow it (e.g., Haskell).

However, there are good reasons why most
languages do provide constructs involving aliasing:

– efficiency (e.g., arrays)

– shared resources (e.g., locks) in concurrent systems

– “action at a distance” (e.g., symbol tables)

– ...…



Example
𝑐 = 𝑟𝑒𝑓 0
incc = 𝜆𝑥: 𝑈𝑛𝑖𝑡. (𝑐 ≔ 𝑠𝑢𝑐𝑐 ! 𝑐 ; ! 𝑐)
decc = 𝜆𝑥: 𝑈𝑛𝑖𝑡. (𝑐 ≔ 𝑝𝑟𝑒𝑑 ! 𝑐 ; ! 𝑐)
incc 𝑢𝑛𝑖𝑡
𝑑𝑒𝑐𝑐 𝑢𝑛𝑖𝑡
o = {i = 𝑖𝑛𝑐𝑐, 𝑑 = 𝑑𝑒𝑐𝑐}

𝑙𝑒𝑡 𝑛𝑒𝑤𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = o
𝜆.𝑈𝑛𝑖𝑡 .

let 𝑐 = 𝑟𝑒𝑓 0 in
let incc = 𝜆𝑥: 𝑈𝑛𝑖𝑡. (𝑐 ≔ 𝑠𝑢𝑐𝑐 ! 𝑐 ; ! 𝑐) in 

let decc = 𝜆𝑥: 𝑈𝑛𝑖𝑡. 𝑐 ≔ 𝑝𝑟𝑒𝑑 ! 𝑐 ; ! 𝑐
let o = {𝑖 = 𝑖𝑛𝑐𝑐, 𝑑 = 𝑑𝑒𝑐𝑐} in 
o



Example



How to enrich the language with the 
new mechanism ？



Syntax 

... plus other familiar types, in examples



Typing rules

type system
a set of rules that assigns a property called type to the various
“constructs “ of a computer program, such as
variables, expressions, functions or modules



Evaluation

What is the value of the expression ref 0 ?
Is

r = ref 0
s = ref 0 

and 
r = ref 0
s = r

behave the same?

Crucial observation:  evaluating ref 0 must do something ?

Specifically, evaluating ref 0 should allocate some storage
and yield a reference (or pointer) to that storage

So what is a reference?



The store 

A reference names a location in the store (also known
as the heap or just the memory)

What is the store?
– Concretely: an array of 8-bit bytes, indexed by 32/64-bit

integers

• More abstractly:   an array of values, abstracting away from 
the different sizes of the runtime representations of 
different values 

• Even more abstractly:  a partial function from locations to 
values 
– set of store locations 
– Location :  an abstract index into the store



Locations

Syntax of values:

...  and since all values are terms ...



Syntax of Terms



Aside

Does this mean we are going to allow programmers
to write explicit locations in their programs??

No: This is just a modeling trick, just as intermediate
results of evaluation

Enriching the “source language” to include some runtime
structures, we can thus continue to formalize evaluation
as a relation between source terms

Aside: If we formalize evaluation in the big-step style,
then we can add locations to the set of values
(results of evaluation) without adding them to the
set of terms



Evaluation

The result of evaluating a term now (with references)

– depends on the store in which it is evaluated

– is not just a value — we must also keep track of the
changes that get made to the store

i.e.,  the evaluation relation should now map a term 
as well as a store to a reduced term and a new store

To use the metavariable 𝜇 to range over stores

𝜇 & 𝜇′ : states of the store before & after evaluation

t | 𝜇 → t′ | 𝜇′



Evaluation

A term of the form ref t1
1. first evaluates inside t1 until it becomes a value ...

2. then chooses (allocates) a fresh location 𝑙 ,
augments the store with a binding from 𝑙 to v1 ,
and returns 𝑙 :



Evaluation

A term !t1 first evaluates in t1 until it becomes a value...

... and then 

1. looks up this value (which must be a location, if the 
original term was well typed)   and 

2. returns its  contents in the current store



Evaluation

An assignment    𝑡1 ≔ 𝑡2 first evaluates 𝑡1 and  
𝑡2 until they become values ...

... and then returns unit and updates the store:



Evaluation

Evaluation rules for function abstraction and
application are augmented with stores, but don’t
do anything with them directly



Aside

Garbage Collection

Note that we are not modeling garbage collection —
the store just grows without bound

It may not be problematic for most theoretical
purposes, whereas it is clear that for practical purposes
some form of deallocation of unused storage must be
provided

Pointer Arithmetic

p++;

We can’t do any!



Store Typing



Typing Locations

Question: What is the type of a location?

Answer:     Depends on the  contents of the store!

e.g, 

in the store  (𝑙1 ⟼unit, 𝑙2 ⟼unit) , the term ! 𝑙2 is 
evaluated to unit,  having type Unit

in the store (𝑙1 ⟼unit, 𝑙2 ⟼ λx:Unit. x), the term ! 𝑙2
has type Unit → Unit



Typing Locations — first try

Roughly, to find the type of a location 𝑙, first look up the
current contents of 𝑙 in the store, and calculate the type
𝑇1 of the contents:

More precisely, to make the type of a term depend on the
store (keeping a consistent state), we should change the
typing relation from three-place to :

i.e., typing is now a four-place relation (about contexts,
stores, terms, and types), though the store is a part of the
context ……



Problems  #1

However, this rule is not completely satisfactory,
and is rather inefficient.
– it can make typing derivations very large (if a location

appears many times in a term) !
– e.g.,

then how big is the typing derivation for ! 𝑙5?

𝜇 = (𝑙1 ↦ λx: Nat. 999,
𝑙2 ↦ λx:Nat. (! 𝑙1 )  x,
𝑙3 ↦ λx:Nat. (! 𝑙2 )  x,
𝑙4 ↦ λx:Nat. (! 𝑙3)  x,
𝑙5 ↦ λx:Nat. (! 𝑙4)  x),



Problems #2

But wait... it gets worse if the store contains a cycle.

Suppose

how big is the typing derivation for ! 𝑙2?

Calculating a type for 𝑙2 requires finding the type of 𝑙1,

which in turn involves 𝑙2

𝜇 = (𝑙1 ↦ λx:Nat. (! 𝑙2 ) x,
𝑙2 ↦ λx:Nat. (! 𝑙1 )  x)) ,



Why? 

What leads to the problems?

Our typing rule for locations requires us to
recalculate the type of a location every time it’s
mentioned in a term, which should not be
necessary

In fact, once a location is first created, the type of
the initial value is known, and the type will be kept
even if the values can be changed



Store Typing

Observation:

The typing rules we have chosen for references
guarantee that a given location in the store is always
used to hold values of the same type

These intended types can be collected into a store
typing:

— a partial function from locations to types



Store Typing

E.g., for

A reasonable store typing  would be

𝜇 = (𝑙1 ↦ λx: Nat. 999,
𝑙2 ↦ λx: Nat. (! 𝑙1 )  x,
𝑙3 ↦ λx: Nat. (! 𝑙2 )  x,
𝑙4 ↦ λx: Nat. (! 𝑙3)  x,
𝑙5 ↦ λx: Nat. (! 𝑙4)  x ) ,



Store Typing

Now, suppose we are given a store typing
Σ describing the store 𝜇 in which we intend to
evaluate some term t

Then we can use Σ to look up the types of locations
in t instead of calculating them from the values in 𝜇

i.e., typing is now a four-place relation on contexts, store
typings, terms, and types.

Proviso: the typing rules accurately predict the results of
evaluation only if the concrete store used during
evaluation actually conforms to the store typing



Final typing rules



Store Typing

Where do these store typings come from?

When we first typecheck a program, there will be no
explicit locations, so we can use an empty store typing,
since the locations arise only in terms that are the
intermediate results of evaluation

So, when a new location is created during evaluation,

we can observe the type of v1 and extend the “current
store typing” appropriately.



Store Typing

As evaluation proceeds and new locations are
created, the store typing is extended by looking at
the type of the initial values being placed in newly
allocated cells

 only records the association

between

already-allocated storage cells and

their types



Safety

Coherence between the statics and the dynamics

Well-formed programs are well-behaved

when executed



Preservation

the steps of evaluation 
preserve 
typing



Preservation

How to express the statement of preservation?
First attempt: just add stores and store typings in the
appropriate places

Theorem(?): if Γ | Σ ⊢ t: T and t 𝜇 ⟶ t′ 𝜇′ ,
then Γ | Σ ⊢ t′: T

Right??
Wrong!

Why wrong?

Because Σ and 𝜇 here are not constrained to have anything
to do with each other!

Exercise: Construct an example that breaks this statement of
preservation



Preservation
Definition: A store 𝜇 is said to be well typed with
respect to a typing context Γ and a store typing Σ,
written Γ | Σ ⊢ 𝜇, if 𝑑𝑜𝑚 𝜇 = 𝑑𝑜𝑚 Σ and Γ | Σ ⊢
𝜇 𝑙 : Σ 𝑙 for every l ∈ 𝑑𝑜𝑚 𝜇

Theorem (?) : if
Γ | Σ ⊢ t: T
t 𝜇 ⟶ t′ 𝜇′
Γ | Σ ⊢ 𝜇

then Γ | Σ ⊢ t′: T

Right this time?

Still wrong !

Why? Where? (E-REFV）13.5.2



Preservation

Creation of a new reference cell ...

𝑙 ∉ 𝑑𝑜𝑚 𝜇

ref v1 𝜇⟶ 𝑙 (𝜇, 𝑙 ↦v1)
(E-REFV)

... breaks the correspondence between the store typing
and the store.

Since the store can grow during evaluation:

Creation of a new reference cell yields a store with a
larger domain than the initial one, making the conclusion
incorrect: if 𝜇′ includes a binding for a fresh location 𝑙 ,
then 𝑙 cann’t be in the domain of Σ , and it will not be the
case that 𝒕′ is typable under 𝜮



Preservation

Theorem:  if 
Γ | Σ ⊢ t: T
Γ | Σ ⊢ 𝜇
t | 𝜇 ⟶ t′| μ′

then,  for some Σ′ ⊇ Σ,
Γ | Σ′ ⊢ t′: T
Γ | Σ′ ⊢ 𝜇′.

A correct version.  

What is Σ′ ?

Proof:  Easy extension of the preservation proof for 
𝜆→



Progress

well-typed expressions  are  
either        values
or can be  further evaluated 



Progress

Theorem:  

Suppose t is a closed, well-typed term

(i.e., Γ| Σ ⊢ t: T for some T and Σ)

then either t is a value or else, for any store 𝜇 such
that Γ| Σ ⊢ 𝜇, there is some term t′ and store 𝜇′
with

t | 𝜇 ⟶ t′ | 𝜇′



Safety 

• preservation and progress together constitute the
proof of safety

– progress theorem ensures that well-typed expressions
don’t get stuck in an ill-defined state, and

– preservation theorem ensures that if a step is a taken the
result remains well-typed (with the same type).

• These two parts ensure the statics and dynamics
are coherent, and that no ill-defined states can ever
be encountered while evaluating a well-typed
expression



In summary  …



Syntax

We added to  λ→ (with Unit) syntactic forms for 
creating, dereferencing, and assigning reference 
cells, plus a new type constructor Ref.



Evaluation

Evaluation relation: t | μ ⟶ t′ | μ′



Typing

Typing becomes a four-place relation: Γ | Σ ⊢ t ∶ T



Preservation

Theorem:  if 

Γ | Σ ⊢ t: T

Γ | Σ ⊢ 𝜇

t | 𝜇 ⟶ t′| μ′

then, for some Σ′ ⊇ Σ,

Γ | Σ′ ⊢ t′: T

Γ | Σ′ ⊢ 𝜇′.



Progress

Theorem: Suppose t is a closed, well-typed term 
(that is,

∅ | Σ ⊢ t: T for some T and Σ).  Then either t is a 
value or else, for any store 𝜇 such that ∅ | Σ ⊢ 𝜇, 
there is some term t′ and store 𝜇′ with t | 𝜇 ⟶
t′ | 𝜇′



Others …



Arrays 

Fix-sized vectors of values. All of the values must have
the same type, and the fields in the array can be
accessed and modified.

e.g.,  arrays can be created with  in Ocaml

[|e1; … ; en|] 

# let a = [|1;3;5;7;9|];;

val a : int array = [|1;3;5;7;9|]

#a;;

-: int array = [|1;3;5;7;9|]



Arrays
let f a =    

for i = 1 to Array.length a - 1 do
let val_i = a.(i) in
let j = ref i in
while !j > 0 && val_i < a.(!j - 1) do

a.(!j) <- a.(!j - 1);
j := !j - 1

done;      
a.(!j) <- val_i

done;;



Recursion via references
Indeed, we can define arbitrary recursive functions using 
references

1. Allocate a ref cell and initialize it with a dummy function of the 
appropriate type:

fact𝑟𝑒𝑓 = ref (λn: Nat. 0)

2. Define the body of the function we are interested in, using the 
contents of the reference cell for making recursive calls:  

fact𝑏𝑜𝑑𝑦 =
λn:Nat.

if iszero n then 1 else times n ((! fact𝑟𝑒𝑓)(pred n))
3. “Backpatch” by storing the real body into the reference cell:

fact𝑟𝑒𝑓 ∶= fact𝑏𝑜𝑑𝑦
4. Extract the contents of the reference cell and use it as desired: 

fact = ! fact𝑟𝑒𝑓



Homework☺

• Read chapter 13

• Read and chew over the codes of  fullref. 

• HW: 13.4.1  and   13.5.8

• Preview chapter 14


