
Part III
Chapter 15: Subtyping

Subsumption

Subtype relation

Properties of subtyping and typing

Subtyping and other features

Intersection and union types

Subtyping

Motivation

With the usual typing rule for applications

is the term

right?

It is not well typed

Motivation

With the usual typing rule for applications

the term

is not well typed.

This is silly: what we’re doing is passing the function

a better argument than it needs

Subsumption

More generally: some types are better than others, in the

sense that a value of one can always safely be used where

a value of the other is expected

We can formalize this intuition by introducing:

Principle of safe substitution

1. a subtyping relation between types, written S <: T

2. a rule of subsumption stating that, if S <: T, then any

value of type S can also be regarded as having type T,

i.e.,

Subtyping

Intuitions: S<:T means ...

“An element of S may safely be used wherever an

element of T is expected” (Official)

• S is “better than” T

• S is a subset of T

• S is more informative / richer than T

Example

We will define subtyping between record types so that, for
example

{𝑥: 𝑁𝑎𝑡, 𝑦: 𝑁𝑎𝑡} <: {𝑥: 𝑁𝑎𝑡}

by subsumption ,

⊢ {𝑥 = 0, 𝑦 = 1} ∶ {𝑥: 𝑁𝑎𝑡}
and hence

is well typed.

Back to the example：

The Subtype Relation: Records

“Width subtyping” : forgetting fields on the right

(S-RcdWidth)

Intuition:

{𝑥: 𝑁𝑎𝑡} is the type of all records with at least a numeric
𝑥 field

𝑙𝑖: 𝑇𝑖
𝑖∈1..𝑛+𝑘 <: 𝑙𝑖: 𝑇𝑖

𝑖∈1..𝑛

The Subtype Relation: Records

“Width subtyping” (forgetting fields on the right):

(S-RcdWidth)

Intuition:

{𝑥: 𝑁𝑎𝑡} is the type of all records with at least a numeric
𝑥 field.

Note that the record type with more fields is a subtype of
the record type with fewer fields

Reason: the type with more fields places stronger
constraints on values, so it describes fewer values

𝑙𝑖: 𝑇𝑖
𝑖∈1..𝑛+𝑘 <: 𝑙𝑖: 𝑇𝑖

𝑖∈1..𝑛

The Subtype Relation: Records

“Depth subtyping” within fields:

The types of individual fields may change, as long as the

type of each corresponding field in the two records are in

the subtype relation

Examples

Examples

We can also use S-RcdDepth to refine the type of just a

single record field (instead of refining every field), by

using S-REFL to obtain trivial subtyping derivations for

other fields.

𝑎:𝑁𝑎𝑡, 𝑏: 𝑁𝑎𝑡 <: 𝑎:𝑁𝑎𝑡
S−RCDWIDTH

𝑚:𝑁𝑎𝑡 <: 𝑚:𝑁𝑎𝑡
S−REFL

𝑥: 𝑎: 𝑁𝑎𝑡, 𝑏: 𝑁𝑎𝑡 , 𝑦: 𝑚:𝑁𝑎𝑡 <: {𝑥: 𝑎:𝑁𝑎𝑡 , 𝑦: 𝑚:𝑁𝑎𝑡 }
S − RcdDepth

Order of fields in Records

The order of fields in a record doesn’t make any difference

to how we can safely use it, since the only thing that we

can do with records (projecting their fields) is insensitive

to the order of fields

S-RcdPerm tells us that

{c:Top, b: Bool, a: Nat} <: {a: Nat, b: Bool, c:Top}

and

{a: Nat, b: Bool, c:Top} <: {c:Top, b: Bool, a: Nat}

The Subtype Relation: Records

Permutation of fields:

Using S-RcdPerm together with S-RcdWidth & S-Trans
allows us to drop arbitrary fields within records

Variations

Real languages often choose not to adopt all of these

record subtyping rules. For example, in Java,

– A subclass may not change the argument or result types of a

method of its superclass (i.e., no depth subtyping)

– Each class has just one superclass (“single inheritance” of

classes)

each class member (field or method) can be assigned a single

index, adding new indices “on the right” as more members

are added in subclasses (i.e., no permutation for classes)

– A class may implement multiple interfaces (“multiple

inheritance” of interfaces)

i.e., permutation is allowed for interfaces

The Subtype Relation: Arrow types

A high-order language, functions can be passed as

arguments to other functions

The Subtype Relation: Arrow types

Note the order of 𝑇1 and 𝑆1 in the first premise.

The subtype relation is

– contravariant in the left-hand sides of arrows

– covariant in the right-hand sides of arrows

The Subtype Relation: Arrow types

Intuition: if we have a function f of type S1 ⟶ S2,

1. f accepts elements of type S1 ; clearly, f will also accept

elements of any subtype T1 of S1
2. the type of f also tells us that it returns elements of type S2;

then these results can be viewed as belonging to any supertype

T2 of S2

i.e.,

any function f of type 𝑆1 ⟶ 𝑆2 can also be viewed as having type

𝑇1 ⟶ 𝑇2

The Subtype Relation: Top

It is convenient to have a type that is a

supertype of every type

We introduce a new type constant Top, plus a rule that

makes Top a maximum element of the subtype relation

i.e,

The Subtype Relation: Top

IIt is convenient to have a type that is a supertype of every

type

We introduce a new type constant Top, plus a rule that

makes Top a maximum element of the subtype relation

Cf. Object in Java.

Subtype Relation: General rules

A subtyping is a binary relation between types that is
closed under the following rules

Subtype Relation

HW for Chap15

• 15.2.2

• 15.3.2

• 15.3.6

